# Chemistry and Toxicity of Urban Sediments, Maricopa County, Arizona—Data and Summary Statistics

By TODD L. INGERSOLL, JOHN T.C. PARKER, and KENNETH D. FOSSUM

U.S. GEOLOGICAL SURVEY Open-File Report 95—752

Prepared in cooperation with the FLOOD CONTROL DISTRICT OF MARICOPA COUNTY



# U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 375 South Euclid Avenue Tucson, AZ 85719-6644 Copies of this report can be purchased from:

U.S. Geological Survey Open-File Section Box 25286, MS 517 Denver Federal Center Denver, CO 80225

## **CONTENTS**

| 41 .  |                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------|
|       | otion                                                                                                     |
|       | ction                                                                                                     |
|       | revious investigations                                                                                    |
|       | cknowledgments                                                                                            |
|       | is                                                                                                        |
|       | ample collection                                                                                          |
|       | ample analyses.                                                                                           |
|       | ation of basic data                                                                                       |
|       | d references.                                                                                             |
|       | ata                                                                                                       |
|       |                                                                                                           |
| FIGUF | RES                                                                                                       |
| 1.    | Map showing study area and locations of detention and retention basins sampled,  Maricopa County, Arizona |
| 2–9.  |                                                                                                           |
| .ر_ے  | 2. pH in soil at basins Residential 1T and Residential 4                                                  |
|       | 3. Chemical-oxygen demand in soil at basins Residential 1T and Residential 4                              |
|       | 4. Nitrite plus organic nitrogen and phosphorus in soil at basin Residential 1T                           |
|       | 5. Nitrite plus organic nitrogen and phosphorus in soil at basin Residential 4                            |
|       | 6. Total nitrogen and nitrite plus nitrate in soil at basin Residential 1T                                |
|       | 7. Total nitrogen and nitrite plus nitrate in soil at basin Residential 4                                 |
|       | 8. Copper, lead, and zinc in soil at basin Residential 1T                                                 |
|       | 9. Copper, lead, and zinc in soil at basin Residential 4                                                  |
|       | 7. Copper, read, and 2mo m son at outsin residential transmissions.                                       |
| TABLE | ES .                                                                                                      |
| 1.    | General summary information for retention and detention basins,                                           |
| 1.    | Maricopa County, Arizona                                                                                  |
| 2.    | Physical characteristics of retention and detention basins                                                |
| 3.    | Summary statistics for physical properties, nutrients, and inorganic constituents in                      |
| ٥.    | sediments from detention basins that drain industrial, commercial,                                        |
|       | and residential basins                                                                                    |
| 4.    | Summary statistics for organochlorine pesticides in sediments from                                        |
| ₹.    | detention basins that drain industrial, commercial, and residential basins                                |
| 5.    | Summary statistics for inorganic constituents in surface and                                              |
| ٥.    | subsurface sediment samples from six detention basins                                                     |
| 6.    | Summary statistics for survival rates of <i>Hyalella azteca</i> , in percent, in                          |
| υ.    | sediments of detention basins                                                                             |
| 7.    | Chemical and grain-size analyses for sediments collected from detention                                   |
| 7 •   | basins that drain industrial, commercial, and residential basins                                          |
| 8.    | Chemical analyses for subsurface sediments collected from selected detention                              |
| о.    | basins to determine background concentrations of inorganic constituents                                   |
| 9.    | Chemical analyses for discrete samples from Residential 4 to assess spatial variability                   |
| 2.    | of selected constituents                                                                                  |
|       | VI DVIVAVA VVIIDIIMUII                                                                                    |

| TABL | ES—Continued                                                                                                                                            | Page |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 10.  | Chemical analyses for sediments collected from Residential 1T and Residential 4 from April 7 through August 31, 1994, to assess temporal variability of |      |
|      | selected constituents                                                                                                                                   | 23   |
| 11.  | Survival rates of Hyalella azteca in sediments collected from industrial,                                                                               |      |
|      | commercial, and residential basins, 1994                                                                                                                | 25   |
| 12.  | Effects of sample preparation on toxicity results                                                                                                       | 25   |
| 13.  | Quality-assurance sample replicates for sediments collected from                                                                                        |      |
|      | selected detention basins                                                                                                                               | 26   |

#### **CONVERSION FACTORS**

| Multiply                             | Ву       | To obtain   |
|--------------------------------------|----------|-------------|
| centimeter (cm)                      | 0.3937   | inch        |
| square centimeter (cm <sup>2</sup> ) | 0.001076 | square inch |
| meter (m)                            | 3.281    | foot        |
| square meter (m <sup>2</sup> )       | 10.76    | square foot |
| square kilometer (km²)               | 0.3861   | square mile |
| liter (L)                            | 0.2642   | gallon      |
| gram (g)                             | 0.03527  | ounce       |
| megagram (Mg)                        | 1.102    | pound       |

Air temperatures are given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation:

F = 1.8 (C) + 32

#### ABBREVIATED WATER-QUALITY UNITS

Chemical concentration is given only in metric units. Chemical concentration in water is given in milligrams per liter (mg/L) or micrograms per liter ( $\mu$ g/L). Milligrams per liter is a unit expressing the solute mass per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 milligrams per liter, the numerical value is about the same as for concentrations in parts per million. A micron is equal to one-millionth of a meter ( $10^{-6}$ ). Specific conductance is given in microsiemens per centimeter ( $\mu$ S/cm) at  $25^{\circ}$ C. Chemical concentration in sediment is given in grams per kilogram (g/kg) or micrograms per gram ( $\mu$ g/g). Micrograms per gram is equivalent to parts per million.

# Chemistry and Toxicity of Urban Sediments, Maricopa County, Arizona—Data and **Summary Statistics**

By Todd L. Ingersoll, John T.C. Parker, and Kenneth D. Fossum

#### **Abstract**

Sediment samples were collected from 24 stormwater retention and detention basins that drain land used for residential, commercial, and industrial purposes in Maricopa County and were analyzed to determine the chemistry and toxicity of pollutants associated with urban stormwater Samples were collected between January and November 1994. Summary statistics are runoff. presented for pH and soil moisture, concentrations of selected inorganic and organic constituents, and concentrations of organochlorine pesticides in sediments associated with each type of land use. Acute toxicity tests were done on sediment samples using the amphipod Hyalella azteca. Survival rates ranged from 0 (zero) to 95 percent. The results of a comparative time-series analysis on samples from two residential sites collected during a 5-month period also are presented. Background concentrations of inorganic constituents in sediments were determined for six basins, and discrete samples were collected to characterize the spatial variability of constituent concentrations in one residential basin. The effect of sieving on sediment toxicity was determined by testing whole and sieved samples. Survival rates ranged from 0 (zero) to 42 percent for sieved samples and 14 to 75 percent for unsieved samples.

#### INTRODUCTION

The chemistry of sediments reflects both the geology of the source area as well as contamination by anthropogenic sources. Sediment chemistry may affect water chemistry as sediments are transported and deposited into ponds, lakes, reservoirs, and streams. In the urban environment, sediments from streets, parking lots, rooftops, construction sites, vacant lots, and landscaped grounds can be transported into rivers, lakes, or reservoirs during rainstorms. Sediments may be transported by flow through gutters, storm drains, detention basins, and stream channels and across urban flood plains. Sediments deposited in stormwater-detention basins are of low mobility compared with sediments deposited in other areas. Consequently, the chemistry of sediments deposited in detention basins reflects the temporal chemistry of sediments from the drainage areas upstream from the basins. This report presents the raw data and summary statistics that describe the chemical composition and toxicity of sediments sampled from detention basins in the Phoenix metropolitan area in Maricopa County, Arizona (fig. 1).

Stormwater retention and detention facilities are integral components of an overall stormwatermanagement system that includes storm sewers, natural and manmade channels, streets, inlets, and surface and subsurface storage areas (NBS Lowery Engineers & Planners and McLaughlin Water Engineers, Ltd., 1991). Retention and detention facilities store accumulated runoff in different ways. Retention basins are used as permanent



#### **EXPLANATION**

#### SAMPLE SITE AND DESIGNATION

- Industrial
- Commercial
- ▲ Residential

Figure 1. Study area and locations of detention and retention basins sampled, Maricopa County, Arizona.

2 Chemistry and Toxicity of Urban Sediments, Maricopa County, Arizona

storage and generally only include outlet structures to deal with inflows that exceed a design storm. Detention basins, however, are used only to attenuate excessive stormwater flows and always include some type of outlet structure. The difference between the inflow from runoff and the design outflow is the storage capacity of a detention basin. Within Maricopa County, retention basins must be able to retain the volume of runoff from a 2-hour storm with a recurrence interval of 100 years. Design requirements for detention basins are that the discharge of a 100-year, 2-hour storm in postdevelopment conditions will not exceed the discharge for predevelopment conditions. For either control structure, all stored runoff must be completely discharged from a basin within 36 hours of the associated storm event. These requirements are set by the Flood Control District of Maricopa County Lowry Engineers & Planners (NBS McLaughlin Water Engineers, Ltd., 1991) and may be adopted in whole or amended by individual jurisdictions.

Section 402(p) of the Water Quality Act passed by Congress in 1987 requires that all municipalities with populations exceeding 100,000 obtain National Pollutant Discharge Elimination System (NPDES) permits for urban stormwater discharge. The conditions of this permit require that the chemistry of urban stormwater runoff be monitored from basins draining residential, commercial, and industrial land uses for the term of the permit. Stormwater monitoring alone is not adequate, however, to determine if different land-use activities influence the chemistry and toxicity of urban runoff. Recent investigations have shown that stormwater chemistry, which depends primarily on drainage area, storm characteristics, percentage of impervious area, and possibly on land-use activities for certain constituents, is directly related to suspended-solids concentrations (Lopes and others, 1995). Characterizing the chemistry and toxicity of sediments from basins draining homogeneous land uses would be a direct method to determine if land use is a significant factor influencing stormwater chemistry. Hydrophobic chemical partitioning (particulate phase and fraction dissolved) is a function of the chemical concentrations in water and suspended particulate concentrations. Trace-element partitioning is a function of suspended-solids concentration, dissolved-contaminant concentration, and sorbed contaminant concentration. A direct characterization of sediments therefore is needed for a complete understanding of stormwater chemistry.

#### **Purpose and Scope**

The purpose of the study was to (1) characterize the chemistry and toxicity of sediments from selected detention basins that drain land used for residential, commercial, and industrial purposes in Maricopa County; (2) determine if there is a statistical difference in the chemical composition of sediments from the different land uses and calculate the mean concentrations of constituents in these sediments; and (3) determine if there are temporal changes in the chemistry of urban sediments. This report presents a description of the sampling procedures used to develop a data set for characterizing the physical and chemical characteristics of detention basins that receive urban stormwater runoff. The descriptive statistics, results of sediment toxicity tests using the organism Hyalella azteca, and raw data obtained from this data-collection effort are presented in the section entitled "Basic Data" at the back of the report.

#### **Previous Investigations**

Previous investigations of urban stormwater and sediment quality in Maricopa County include Lopes and others (1995), Lopes and Fossum (1995), Rector (1993), and Earth Technology Corporation (1993). Lopes and others (1995) monitored stormwater quality from October 1991 to October 1993 at four drainage basins with urban land use in Maricopa County and found that most event-mean concentrations of constituents were positively correlated with event-mean concentrations of suspended solids. Lopes and Fossum (1995) studied the toxicity of stormwater, streamflow, and bed material in urban Maricopa County. Rector (1993) assessed contaminant levels in sediments and in fish and bird tissues at 22 sites

throughout Arizona. Earth Technology Corporation (1993) described the chemistry of sediment samples collected along the Gila River flood plain and above Gillespie and Painted Rock Dams and in Painted Rock Reservoir downstream from the Phoenix metropolitan area.

#### **Acknowledgments**

Tom Ankeny and Isaac Chavira, City of Tempe; Beth Benning, Theresa Foster, and Joan Poladian, City of Phoenix; Lyla Madden, City of Scottsdale; Dan Sherwood, City of Glendale; Dave Gilbertson, Gilbertson & Associates; and James Abraham, Clouse Engineering contributed information on the physical characteristics of the retention and detention basins that were sampled. Roland Wass, Flood Control District of Maricopa County (FCDMC), contributed information on the design and requirements of retention and detention basins.

#### **METHODS**

Potential sampling sites were examined before sampling to ensure that selected drainage basins contained areas with a homogeneous land use. This reconnaissance was done in order to characterize the effects of land use on sediment toxicity and chemistry. Eight retention and detention basins in industrial, commercial, and residential areas were selected in urban Maricopa County (fig. 1). Samples of sediments were collected between January and November 1994.

In past decades, much of urbanized Maricopa County was used for agriculture. A basin that was used for agricultural purposes may have residual effects of agricultural practices that might influence sediment chemistry. For this reason, previous uses of the basins were investigated to determine if the basins were used for agriculture and when the basins became urbanized areas.

An additional grass-covered residential basin (Residential 1T) was selected for a comparative time-series analysis. This basin, along with one of the original bare-soil residential basins (Residential 4), was sampled to determine temporal

changes in sediment chemistry. Samples were collected on April 7, April 22, May 6, June 27, August 11, and August 31, 1994, and were analyzed to determine if constituent concentrations decrease during dry periods and increase during periods of runoff. Sediment samples also were collected to (1) identify background concentrations of inorganic constituents, (2) characterize the spatial variability of constituent concentrations, and (3) determine the effects of temporal variability and sample preparation on toxicity results.

#### **Sample Collection**

Field procedures used in the collection of sediment samples were designed to ensure that sediment samples were representative of those areas in detention and retention basins subject to stormwater inundation and to reduce the potential for sample contamination. Visual field evidence was used to determine the extent of any areas recently inundated in proximity to points of inflow in the basins. A grid pattern was established over these areas and a minimum of eight samples were collected at regular intervals over this grid. Samples were taken from the upper 2 cm of a 100-square-centimeter area at each sampling point.

Sample collection from grass-lined basins first involved the removal of the upper grass-and-root system using a shovel. Most of the work was performed by hand in order to minimize contact between the steel shovel and soil. Soils trapped within the root system were shaken or scraped free before being collected. Plastic or metal spoons were used to collect samples, depending on analysis type, and sample fractions were kept in separate teflon bags.

Soil samples were allowed to air dry for 24 to 72 hours because they were moist and could not be sieved. Once dry, the samples were sieved to segregate the sediments that were less than 125 microns, which is the grain size that has the largest capacity for sorbing constituents and that contains most of the trace metals (Horowitz and Elrick, 1987). Fractions collected with plastic sieves were kept in 500-milliliter plastic containers and were analyzed for metals, chemical-oxygen demand

(COD), nutrients, and total and inorganic carbon. Fractions collected with metal sieves were kept in 500-milliliter glass containers and were analyzed for organochlorine pesticides and base-neutral-acid compounds.

#### Sample Analyses

Samples collected to characterize sediments from different land uses were analyzed for pH, soil moisture, metals (arsenic, copper, manganese, cadmium, mercury, chromium, iron, cobalt, lead, and zinc), nutrients, organochlorine pesticides, and organic carbon and were tested for toxicity using the amphipod Hyalella azteca (Ingersoll and Nelson, 1990; Nebeker and others, 1984; Landrum and Scavia, 1983). Sediments collected from basins Residential 1T and Residential 4, the two basins for the time-series analysis, were analyzed for metals, nutrients, organochlorine pesticides, acid-base-neutral compounds, and COD.

Soil pH samples were prepared by placing 50 g of freshly collected soil in 200 mL of deionized water. Solutions were allowed to equilibrate for 24 hours before measurements were made. Soil moisture was determined by dividing the difference between the initial sample weight and the weight of the oven-dried (at 105°C) sample. This value is reported as a weight percentage.

Background concentrations of inorganic constituents were determined by collecting and analyzing subsurface sediments from soil layers below the assumed infiltration depth of inundating stormwater. This depth was determined by a visual inspection for any apparent color change in the soil. Samples were collected from at least 15 cm below the surface when no color change was noted. Six sites (Residential 1T, Residential 2, Residential 3, Residential 4, Industrial 2, and Industrial 3) were selected for this analysis. All but one site (Residential 3) exhibited the indicative color change for determining the sample collection location. Sediment from Residential 3 was collected from the 15-centimeter depth. Residential 4 was selected for the discrete-location analysis. A grid pattern was established in relation to the point of inflow, and the locations for 10 sampling points were measured and recorded. These discrete samples were analyzed for organochlorine pesticides, metals, nutrients, and organic carbon. Residential 3, Industrial 1, and Commercial 3 were resampled in order to determine the temporal changes in toxicity. Raw and sieved portions of these samples were analyzed to determine the effects of sample preparation on sediment toxicity.

Quality-assurance replicate samples were analyzed for COD, metals, nutrients, acid-base-neutral compounds, organic and inorganic carbon, and organochlorine pesticides. Quality-assurance data for Residential 1T, Residential 4, Residential 5, Residential 7, Commercial 5, Industrial 6, and Industrial 8 are shown in table 13.

Toxicity testing is designed to compare survival rates of Hyalella azteca in 100-percent test sediment (test end point) with survival rates in a negative-control sediment of silica sand. Five separate 1-liter glass beakers were filled with 100 g of test and negative-control sediments and 400 mL of reconstituted hard water. The beakers were equipped with aeration devices and allowed to stabilize for 24 hours before testing. Conductivity, pH, hardness, and alkalinity of the water were measured at the end of this equilibration period. Twenty Hyalella azteca were introduced to each of the control and test vessels and were screened at the end of the test period (10 days) to determine mortality.

#### PRESENTATION OF BASIC DATA

The descriptive statistics, results of sedimenttoxicity tests using the organism Hyalella azteca, and the raw data are presented in tables 1-13 and figures 2-9 in the section entitled "Basic Data" at the back of the report. The physical characteristics reported for the retention and detention basins sampled include year of construction, basin area, drainage area, percentage of the drainage area that determines the basin classification, previous land use, current type of ground cover, and type of stormwater delivery to the basin—storm drain, surface runoff, or a combination of storm drain and surface runoff (tables 1 and 2). Engineering records for Industrial 3 and Industrial 6 were unavailable; therefore, information on these basins is incomplete. Two basins handle the stormwater runoff at Industrial 8; therefore, there are two different detention-basin areas. Physical properties, nutrients, inorganic constituents, and organochlorine pesticides are summarized in tables 3 and 4. Inorganic constituents of surface and subsurface sediment samples are summarized in table 5. The survival rates of Hyalella azteca in sediments are given, in percent, in table 6. Chemical and grainsize analyses for surface and subsurface sediments are given in tables 7 and 8. Chemical analyses for discrete samples from Residential 4 are shown to assess spatial variability of selected constituents (table 9). Temporal variations of pH and COD in Residential 1T and Residential 4 are presented in figures 2 and 3. Temporal variations of the nitrogen compounds, phosphorus, copper, lead, and zinc for Residential 1T and Residential 4 are shown in figures 4-9. Chemical analyses for sediments collected April 7 through August 31, 1994, in Residential 1T and Residential 4 for assessment of temporal variability are in table 10. Survival rates for Hyalella azteca in 1994 are given in table 11. Laboratory results for effects of sample preparation on toxicity results are shown in table 12. Quality-assurance sample replicates are given in table 13.

#### SELECTED REFERENCES

- Earth Technology Corporation, 1993, Lower/Middle Gila River study and Painted Rocks Lake—Phase I Diagnostic/feasibility study, Maricopa County, Arizona: Phoenix, Earth Technology Corporation report to Arizona Department of Environmental Quality, 2 volumes.
- Helsel, D.R., and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: American Geophysical Union, Water Resources Research, v. 24, no. 12, p. 1997–2004.
- Horowitz, A.J., and Elrick, K.A., 1987, The relation of stream sediment surface areas, grain size and

- composition to trace element chemistry. Applied Geochemistry, v. 2, p. 437–451.
- Ingersoll, C.G., and Nelson, M.K., 1990, Testing sediment toxicity with *Hyalella azteca* (Amphipoda) and *Chironomus riparius* (Diptera): American Society for Testing Materials Special Technical Publication 1096, 13th Symposium on Aquatic Toxicology and Risk Assessment.
- Landrum, P.F., and Scavia, D., 1983, Influence of sediment on anthracene uptake, depuration, and biotransformation by the amphipod *Hyalella azteca*: Canadian Journal of Fisheries and Aquatic Science, v. 40, p. 298–305.
- Lopes, T.J., and Fossum, K.D., 1995, Selected chemical characteristics and acute toxicity of urban stormwater, streamflow, and bed material, Maricopa County, Arizona: U.S. Geological Survey Water-Resources Investigations Report 94-4074, 52 p.
- Lopes, T.J., Fossum, K.D., Phillips, J.V., and Monical,
  J.E., 1995, Statistical summary of selected physical,
  chemical, and microbial characteristics, and
  estimates of constituent loads in urban stormwater,
  Maricopa County, Arizona: U.S. Geological Survey
  Water-Resources Investigations Report 94–4240,
  62 p.
- NBS Lowry Engineers & Planners and McLaughlin Water Engineers, Ltd., 1991, Drainage design manual for Maricopa County, Arizona, in Hydraulics: NBS Lowry Engineers & Planners and McLaughlin Water Engineers, Ltd., v. 2, p. 361–371.
- Nebeker, A.V., Cairns, M.A., Gakstatter, J.H., Malueg, K.W., Schuytema, G.S., and Krawczyk, D.F., 1984, Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates: Environmental Toxicology and Chemistry, v. 3, p. 617–630.
- Rector, Samuel, 1993, Arizona priority pollutant sampling program—1993 Report: Phoenix, Arizona Department of Environmental Quality, 34 p.

### **BASIC DATA**

Basic Data 7

(page 9 Lollows)

Table 1. General summary information for retention and detention basins, Maricopa County, Arizona

| Basin<br>type | Construction dates   | Basin area, in square meters | Drainage areas,<br>in square kilometers | Land use,<br>in percent |
|---------------|----------------------|------------------------------|-----------------------------------------|-------------------------|
| Industrial    | 1964–89              | 110-30,000                   | 0.00127-0.886                           | 91–100                  |
| Commercial    | 1981 <del>–9</del> 1 | 176–2,100                    | .0006410206                             | 100                     |
| Residential   | 1974–88              | 762–22,900                   | .0983–.837                              | 48–100                  |

Table 2. Physical characteristics of retention and detention basins

[B, bare ground; Bd, boulder; C, cobble; G, grass; Gr, gravel; H, hedge; R, reeds; T, trees; W, weeds; SR, surface runoff; SD, storm drain. N/A, not applicable]

| Basin name     | Date of sample       | Year of<br>con-<br>struc-<br>tion | Detention-<br>basin area,<br>in square<br>meters | Drainage-<br>basin<br>area, in<br>square<br>kilom-<br>eters | Land<br>use, in<br>per-<br>cent | Previous<br>iand use     | Ground<br>cover | Type of<br>drainage |
|----------------|----------------------|-----------------------------------|--------------------------------------------------|-------------------------------------------------------------|---------------------------------|--------------------------|-----------------|---------------------|
|                |                      |                                   | Indi                                             | ustrial                                                     |                                 |                          |                 |                     |
| Industrial 1   | 03-03-94             | <sup>1</sup> 1964–71              | 1,300                                            | 0.0705                                                      | 98                              | Agriculture              | B/G/T/W         | SR/SD               |
| Industrial 2   | 030294               | 1975                              | 4,330                                            | .0900                                                       | 91                              | Agriculture              | B/G/T/W         | SD                  |
| Industrial 3   | 030294               | 1976                              | 2,060                                            | N/A                                                         | N/A                             | Commercial               | B/G/T           | SD                  |
| Industrial 4   | 021794               | 1989                              | 30,000                                           | .886                                                        | 100                             | Industrial               | B/W             | SR/SD               |
| Industrial 5   | 11-10-94             | 1970                              | 166                                              | .00127                                                      | 100                             | Agriculture              | G/W             | SR                  |
| Industrial 6   | 12-29-94             | 1966                              | N/A                                              | N/A                                                         | N/A                             | Industrial               | B/R             | SR                  |
| Industrial 7   | 12-15-94             | 1985                              | 110                                              | .00142                                                      | 100                             | Commercial               | B/Gr            | SR                  |
| Industrial 8   | 11-08-94             | 1977                              | 360/341                                          | .0286                                                       | 100                             | Desert                   | Bd/Gr           | SR                  |
|                |                      |                                   | Com                                              | mercial                                                     |                                 |                          |                 |                     |
|                |                      |                                   |                                                  |                                                             |                                 | Agricultural/            |                 |                     |
| Commercial 1   | 030394               | 1980                              | 2,100                                            | .0175                                                       | 100                             | Bare <sup>2</sup>        | G               | SR                  |
| Commercial 2   | 03-04-94             | 1987                              | 688                                              | .00449                                                      | 100                             | Commercial               | G/H             | SR                  |
| Commercial 3   | 03-03-94             | 1985                              | 1,390                                            | .0192                                                       | 100                             | Desert                   | B/T             | SR                  |
| Commercial 4   | 021794               | 1982                              | 1,300                                            | .0197                                                       | 100                             | Desert                   | B/Gr            | SR                  |
| Commercial 5   | 111094               | 1986                              | 840                                              | .0206                                                       | 100                             | Agriculture              | B/Gr/W          | SR                  |
|                |                      |                                   |                                                  |                                                             |                                 | Agricultural/            |                 |                     |
| Commercial 6   | 12–30–94             | <sup>1</sup> 1989 <u>9</u> 1      | 176                                              | .000641                                                     | 100                             | Bare <sup>3</sup>        | B/C/Gr          | SR                  |
| Commercial 7   | 12–30–94             | 1988                              | 438                                              | .00973                                                      | 100                             | Agriculture              | B/Bd/Gr         | SR                  |
| Commercial 8   | 11–08–94             | 1986                              | 1,540                                            | .000873                                                     | 100                             | Desert                   | B/Gr/T/W        | SR                  |
|                |                      |                                   | Resi                                             | dential                                                     |                                 |                          |                 |                     |
| Residential 1  | 02-16-94             | 1978                              | 17,700                                           | .702                                                        | 92                              | Agriculture              | G/T             | SD                  |
| Residential 1T | 040794               | 1983                              | 22,900                                           | .837                                                        | 98                              | Agriculture              | G/T/W           | SD                  |
|                |                      |                                   |                                                  |                                                             |                                 | Agricultural/            |                 |                     |
| Residential 2  | 030294               | 1988                              | 4,610                                            | .207                                                        | 100                             | Residential <sup>4</sup> | G/T/W           | SR                  |
| Residential 3  | 02-17-94             | 1985                              | 762                                              | .527                                                        | 100                             | Desert                   | B/T             | SR                  |
| Residential 4  | 02–1 <i>7</i> –94    | 1979                              | 1,110                                            | .0983                                                       | 48                              | Desert                   | B/T/W           | SR                  |
| Residential 5  | 12–15–94             | 1977                              | 6,680                                            | .400                                                        | 100                             | Agriculture              | B/Gr/T          | SR/SD               |
| Residential 6  | 12–15–94             | 1974                              | 4,780                                            | .713                                                        | 89                              | Agriculture              | G/T             | SD                  |
| Residential 7  | 11 <del>-08-94</del> | 1988                              | 4,050                                            | .111                                                        | 100                             | Residential              | G/T/W           | SD                  |
| Residential 8  | 11-10-94             | 1984                              | 4,090                                            | .481                                                        | 100                             | Agriculture              | G/W             | SD                  |

<sup>&</sup>lt;sup>1</sup>Dates from historical aerial photographs.

<sup>&</sup>lt;sup>2</sup>Agricultural until 1967; bare ground until construction date.

<sup>&</sup>lt;sup>3</sup>Agricultural until 1973; bare ground until construction dates.

<sup>&</sup>lt;sup>4</sup>Agricultural until 1972; residential thereafter.

**Table 3.** Summary statistics for physical properties, nutrients, and inorganic constituents in sediments from detention basins that drain industrial, commercial, and residential basins

[Units are expressed in micrograms per gram unless otherwise noted. mg/kg, milligram per kilogram; g/kg, gram per kilogram; <, less than. N/A, not applicable]

| Constituent                                                     | Mean   | Standard deviation | Median     | Maxi-<br>mum | Mini-<br>mum | Number<br>of non-<br>detections | Detection<br>limit |
|-----------------------------------------------------------------|--------|--------------------|------------|--------------|--------------|---------------------------------|--------------------|
|                                                                 |        |                    | Industrial |              |              |                                 |                    |
| pH                                                              | 7.2    | 0.32               | 7.25       | 7.6          | 6.6          | N/A                             | N/A                |
| Soil moisture, in percent                                       | 2.88   | .99                | 2.5        | 4            | 2            | 0                               | .1                 |
| Nitrogen, NH <sub>4</sub> (mg/kg)                               | 8.68   | 5.44               | 7.45       | 19           | 2.4          | 0                               | .2                 |
| Nitrogen, NH <sub>4</sub> +organic (mg/kg)                      | 1,141  | 725                | 985        | 2,600        | 360          | 0                               | 20.0               |
| Nitrogen, NO <sub>2</sub> +NO <sub>3</sub> (mg/kg) <sup>1</sup> | 9.13   | 10.6               | 8.0        | 23           | <2.0         | 2                               | 2.0                |
| Phosphorus (mg/kg)                                              | 924    | 253                | 955        | 1,300        | 570          | 0                               | 40.0               |
| Carbon, inorganic (g/kg) <sup>1</sup>                           | 4.42   | 4.72               | 2.80       | 14.0         | <.1          | 1                               | .1                 |
| Carbon, inorganic+<br>organic (g/kg)                            | 28.1   | 16.6               | 23         | 51           | 6            | 0                               | .1                 |
| Arsenic                                                         | 8.5    | 3.16               | 8          | 14           | 5            | 0                               | 1.0                |
| Cadmium <sup>1</sup>                                            | 1.78   | 1.09               | 1.50       | 3.0          | <1.0         | 3                               | 1.0                |
| Chromium                                                        | 25     | 9.26               | 25         | 40           | 10           | 0                               | 1.0                |
| Cobalt                                                          | 17.5   | 4.63               | 20         | 20           | 10           | 0                               | 5.0                |
| Copper                                                          | 62.5   | 31.1               | 65         | 110          | 20           | 0                               | 1.0                |
| Lead                                                            | 67.5   | 64.5               | 50         | 220          | 20           | 0                               | 10.0               |
| Manganese                                                       | 489    | 115                | 480        | 700          | 330          | 0                               | 1.0                |
| Zinc                                                            | 228    | 118                | 200        | 470          | 70           | 0                               | 1.0                |
| Iron                                                            | 14,600 | 3,500              | 14,000     | 21,000       | 10,000       | 0                               | 1.0                |
| Mercury                                                         | .041   | .024               | .03        | .07          | .02          | 0                               | .01                |
|                                                                 |        |                    | Commercia  |              |              |                                 |                    |
| рН                                                              | 7.32   | .38                | 7.3        | 7.9          | 6.8          | N/A                             | N/A                |
| Soil moisture, in percent                                       | 3.62   | .74                | 3.5        | 5            | 3            | 0                               | .1                 |
| Nitrogen, NH <sub>4</sub> (mg/kg)                               | 15.7   | 9.67               | 13.5       | 34           | 6.1          | 0                               | .2                 |
| Nitrogen, NH <sub>4</sub> +organic (mg/kg)                      | 1,240  | 911                | 860        | 3,200        | 490          | 0                               | 20.0               |
| Nitrogen, NO <sub>2</sub> +NO <sub>3</sub> (mg/kg) <sup>1</sup> | 12.38  | 5.42               | 11.5       | 22           | 6            | 0                               | 2.0                |
| Phosphorus (mg/kg)                                              | 805    | 246                | 790        | 1,100        | 480          | 0                               | 40.0               |
| Carbon, inorganic (g/kg) <sup>1</sup>                           | 4.79   | 4.11               | 3.55       | 12           | .9           | 0                               | .1                 |

See footnote at end of table.

**Table 3**. Summary statistics for physical properties, nutrients, and inorganic constituents in sediments from detention basins that drain industrial, commercial, and residential basins—Continued

| Constituent                                                     | Mean   | Standard deviation | Median       | Maxi-<br>mum | Mini-<br>mum | Number<br>of non-<br>detections | Detection<br>ilmit |
|-----------------------------------------------------------------|--------|--------------------|--------------|--------------|--------------|---------------------------------|--------------------|
|                                                                 |        | C                  | ommercial—Co | ontinued     |              |                                 |                    |
| Carbon, inorganic+                                              |        | 4                  |              | 4.0          |              | ^                               | _                  |
| organic (g/kg)                                                  | 26.2   | 15.2               | 25           | 49           | 9.6          | 0                               | .1                 |
| Arsenic                                                         | 8      | 2                  | 7.5          | 12           | 6            | 0                               | 1.0                |
| Cadmium <sup>1</sup>                                            | 1.21   | .754               | 1.03         | 2.0          | <1.0         | 4                               | 1.0                |
| Chromium                                                        | 18.75  | 6.41               | 20           | 30           | 10           | 0                               | 1.0                |
| Cobalt                                                          | 12.5   | 4.63               | 10           | 20           | 10           | 0                               | 5.0                |
| Copper                                                          | 33.75  | 11.88              | 30           | 50           | 20           | 0                               | 1.0                |
| Lead                                                            | 51.25  | 51.11              | 25           | 150          | 10           | 0                               | 10.0               |
| Manganese                                                       | 518    | 114                | 495          | 700          | 400          | 0                               | 1.0                |
| Zinc                                                            | 195    | 154                | 140          | 530          | 40           | 0                               | 1.0                |
| ron                                                             | 13,000 | 1,690              | 13,000       | 15,000       | 10,000       | 0                               | 1.0                |
| Mercury                                                         | .064   | .075               | .035         | .24          | .02          | 0                               | .01                |
|                                                                 |        |                    | Residenti    | ıl           |              |                                 |                    |
| Н                                                               | 7.08   | .37                | 7            | 7.8          | 6.5          | N/A                             | N/A                |
| Soil moisture, in percent                                       | 3.28   | .95                | 4            | 4            | 2            | 0                               | .1                 |
| Nitrogen, NH <sub>4</sub> (mg/kg)                               | 11.04  | 10.6               | 7.4          | 36           | 4.2          | 0                               | .2                 |
| Nitrogen, NH <sub>4</sub> +organic                              |        |                    |              |              |              |                                 |                    |
| (mg/kg)                                                         | 1,240  | 675                | 1,300        | 2,200        | 410          | 0                               | 20.0               |
| Nitrogen, NO <sub>2</sub> +NO <sub>3</sub> (mg/kg) <sup>1</sup> | 9.74   | 7.36               | 7.5          | 25           | <2.0         | 1                               | 2.0                |
| Phosphorus (mg/kg)                                              | 1,046  | 401                | 990          | 1,900        | 620          | 0                               | 40.0               |
| Carbon, inorganic                                               | 6.02   | 9.32               | 2.05         | 28           | .5           | 0                               | .1                 |
| Carbon, inorganic+                                              |        |                    |              |              |              |                                 |                    |
| organic (g/kg)                                                  | 22.28  | 17.09              | 20.5         | 61           | 6.5          | 0                               | .1                 |
| Arsenic                                                         | 8.12   | 2.53               | 8            | 11           | 4            | 0                               | 1.0                |
| Cadmium <sup>1</sup>                                            | 2.19   | 2.35               | 1            | 7            | <1.0         | 2                               | 1.0                |
| Chromium                                                        | 33.75  | 29.25              | 20           | 100          | 10           | 0                               | 1.0                |
| Cobalt                                                          | 12.5   | 4.63               | 10           | 20           | 10           | 0                               | 5.0                |
| Copper                                                          | 42.5   | 21.21              | 40           | 90           | 20           | 0                               | 1.0                |
| Lead                                                            | 43.75  | 29.25              | 40           | 90           | 10           | 0                               | 10.0               |
| Manganese                                                       | 460    | 194                | 465          | 680          | 190          | 0                               | 1.0                |
| Zinc                                                            | 136    | 92                 | 110          | 310          | 50           | 0                               | 1.0                |
| fron                                                            | 13,100 | 4,245              | 14,000       | 18,000       | 4,800        | 0                               | 1.0                |
| Mercury <sup>1</sup>                                            | .22    | .41                | .04          | 1.20         | <.01         | 1                               | .01                |

<sup>&</sup>lt;sup>1</sup>One or more sampling sites showed concentrations below detection limits for this constituent. Statistics were calculated using log-probability regression methods described in Helsel and Cohn (1989).

**Table 4.** Summary statistics for organochlorine pesticides in sediments from detention basins that drain industrial, commercial, and residential basins

[Values are in micrograms per kilogram (mg/kg). DDD, dichlorodiphenyldichloroethane; DDE, dichlorodiphenylethylene; DDT, dichlorodiphenyltrichloroethane; PCB, polychlorinated biphenyl; <, less than. Dashes indicate no data]

| Constituent                     | Mean | Standard deviation | Median      | Maximum | Minimum | Number<br>of non-<br>detections | Detection<br>limit |
|---------------------------------|------|--------------------|-------------|---------|---------|---------------------------------|--------------------|
|                                 |      |                    | Industrial  |         |         | _                               |                    |
| Aldrin <sup>1</sup>             | 2.35 | 5.48               | 0.40        | 6.3     | <0.1    | 2                               | 0.10               |
| Chlordane                       | 55.1 | 88.4               | 28.5        | 270     | 5       | 0                               | 1.0                |
| DDD1                            | 1.81 | 3.25               | .70         | 9.8     | <.1     | 3                               | .10                |
| DDE                             | 46.6 | 70.3               | 7.45        | 190     | 2.1     | 0                               | .1                 |
| DDT <sup>1</sup>                | 3.44 | 4.72               | 1.20        | 12      | <.1     | 2                               | .1                 |
| Dieldrin <sup>1</sup>           | 3.3  | 4.24               | 1.20        | 11.0    | <.4     | 3                               | .4                 |
| Endrin <sup>2</sup>             |      |                    |             |         |         | 8                               | .1                 |
| Heptachlor <sup>3</sup>         |      |                    |             | .1      | <.1     | 7                               | .1                 |
| Heptachlor epoxide <sup>3</sup> |      |                    |             | 1.2     | <.1     | 6                               | .1                 |
| Lindane <sup>3</sup>            |      |                    |             | .1      | <.1     | 7                               | .1                 |
| Toxaphene <sup>1</sup>          | 26.6 | 26.3               | 15          | 80      | <10     | 1                               | 10.0               |
| PCB                             | 19.5 | 19.2               | 15          | 58      | 1       | 0                               | 1.0                |
|                                 |      |                    | Commercial  |         |         |                                 |                    |
| Aldrin <sup>1</sup>             | .61  | .75                | .35         | 2.4     | <.3     | 2                               | .10                |
| Chlordane                       | 22.8 | 16.1               | 24.5        | 47      | 2       | 0                               | 1.0                |
| DDD1                            | 1.40 | 1.74               | .80         | 4.8     | <.1     | 3                               | .10                |
| DDE                             | 42.7 | 57.6               | 24          | 180     | 3.4     | 0                               | .1                 |
| DDT1                            | 5.11 | 7.99               | 2.5         | 24      | <.1     | 3                               | .1                 |
| Dieldrin                        | 1.3  | 1.3                | .85         | 4.4     | .4      | 0                               | .4                 |
| Endrin <sup>3</sup>             |      |                    |             | 2.2     | <.1     | 7                               | .1                 |
| Heptachlor <sup>2</sup>         |      |                    |             |         |         | 8                               | .1                 |
| Heptachlor epoxide1             | .19  | .31                | .42         | .9      | <.1     | 5                               | .1                 |
| Lindane <sup>3,4</sup>          |      |                    |             | .4      | <.1     | 6                               | .1                 |
| Toxaphene1                      | 63   | 59.1               | 45          | 160     | <10     | 1                               | 10.0               |
| PCB <sup>4</sup>                | 17.8 | 37.5               | 3           | 110     | 2       | 0                               | 1.0                |
|                                 |      |                    | Residential |         |         |                                 |                    |
| Aldrin <sup>1</sup>             | .8   | .92                | .55         | 2.7     | <.1     | 2                               | .10                |
| Chlordane <sup>1</sup>          | 250  | 391                | 23          | 950     | <1.0    | 1                               | 1.0                |
| DDD1                            | 7.38 | 14.3               | 1.9         | 42      | <.1     | 3                               | .10                |
| DDE                             | 54.1 | 68.3               | 22          | 180     | .7      | 0                               | .1                 |
| DDT1                            | 2.55 | 2.41               | 2.3         | 6.4     | <2.0    | 1                               | .1                 |
| Dieldrin <sup>1</sup>           | 10.8 | 23.6               | 3.1         | 69      | <.8     | 1                               | .4                 |
| Endrin <sup>2</sup>             |      |                    |             |         |         | 8                               | .1                 |
| Heptachlor3                     |      |                    |             | .6      | <.1     | 6                               | .1                 |
| Heptachlor epoxide <sup>1</sup> | .85  | 1.42               | .40         | 4.3     | <.1     | 1                               | .1                 |
| Lindane <sup>3</sup>            |      |                    |             | .3      | <.1     | 7                               | .1                 |
| Toxaphene <sup>1</sup>          | 62.4 | 57.9               | 50          | 180     | <10     | 2                               | 10.0               |
| PCB                             | 274  | 700                | 7.5         | 2,000   | 1       | 0                               | 1.0                |

<sup>&</sup>lt;sup>1</sup>One or more sampling sites showed concentrations below detection limits for this constituent. Statistics were calculated using log-probability regression methods described in Helsel and Cohn (1989).

<sup>&</sup>lt;sup>2</sup>All sampling sites showed concentrations below detection limits for this constituent. See table 10 for raw data values.

<sup>&</sup>lt;sup>3</sup>Less than half of sampling sites showed concentrations above detection limits for this constituent. Statistics were not computed. See table 10 for raw data values.

<sup>&</sup>lt;sup>4</sup>Data set contains estimated values. See table 10 for raw data values.

**Table 5.** Summary statistics for inorganic constituents in surface and subsurface sediment samples from six detention basins

[Values are in micrograms per gram (mg/g). <, less than. Dashes indicate no data]

| Constituent | Sample<br>location      | Mean   | Standard<br>deviation | Median | Maximum | Minimum | Number of non-detections | Detection<br>ilmit |
|-------------|-------------------------|--------|-----------------------|--------|---------|---------|--------------------------|--------------------|
| <b>A</b>    | Surface                 | 7      | 2.61                  | 6.5    | 11      | 4       | 0                        | 1.0                |
| Arsenic     | Subsurface              | 9.83   | 3.19                  | 9      | 15      | 7       | 0                        | 1.0                |
| C. Indian   | Surface <sup>1</sup>    | 1.74   | 1.09                  | 1.5    | 3       | <1      | 1                        | 1.0                |
| Cadmium     | Subsurface <sup>2</sup> |        |                       |        | 1       | <1      | 4                        | 1.0                |
| Claration   | Surface                 | 23.3   | 12.11                 | 25     | 40      | 10      | 0                        | 1.0                |
| Chromium    | Subsurface              | 20     | 12.65                 | 15     | 40      | 10      | 0                        | 1.0                |
| C 1 1       | Surface                 | 15     | 5.48                  | 15     | 20      | 10      | 0                        | 5.0                |
| Cobalt      | Subsurface              | 15     | 5.48                  | 15     | 20      | 10      | 0                        | 5.0                |
| 0           | Surface                 | 50     | 28.28                 | 40     | 90      | 20      | 0                        | 1.0                |
| Copper      | Subsurface              | 30     | 12.65                 | 25     | 50      | 20      | 0                        | 1.0                |
| T 3         | Surface                 | 71.7   | 74.7                  | 45     | 220     | 20      | 0                        | 10.0               |
| Lead        | Subsurface              | 51.7   | 63.4                  | 25     | 180     | 20      | 0                        | 10.0               |
| M           | Surface                 | 427    | 130                   | 380    | 630     | 300     | 0                        | 1.0                |
| Manganese   | Subsurface              | 440    | 169                   | 415    | 680     | 250     | 0                        | 1.0                |
| 77:         | Surface                 | 188    | 150                   | 140    | 470     | 70      | 0                        | 1.0                |
| Zinc        | Subsurface              | 88     | 66                    | 70     | 220     | 40      | 0                        | 1.0                |
| T           | Surface                 | 12,600 | 4,600                 | 11,500 | 18,000  | 6,800   | 0                        | 1.0                |
| Iron        | Subsurface              | 14,800 | 6,740                 | 12,500 | 24,000  | 7,000   | 0                        | 1.0                |
|             | Surface                 | .048   | .021                  | .05    | .07     | .02     | 0                        | .01                |
| Mercury     | Subsurface              | .025   | .008                  | .02    | .04     | .02     | 0                        | .01                |

<sup>&</sup>lt;sup>1</sup>One or more sampling sites showed concentrations below detection limits for this constituent. Statistics were calculated using log-probability regression methods described in Helsel and Cohn (1989).

**Table 6.** Summary statistics for survival rates of *Hyalella azteca*, in percent, in sediments from detention basins

| Basin type  | Mean | Standard deviation | Median | Maximum | Minimum |
|-------------|------|--------------------|--------|---------|---------|
| Industrial  | 50.4 | 43.9               | 64.5   | 95      | 0       |
| Commercial  | 34   | 39.7               | 22     | 94      | 0       |
| Residential | 48.5 | 41.0               | 68.5   | 94      | 0       |

<sup>&</sup>lt;sup>2</sup> Less than half of sampling sites showed concentrations above detection limits for this constituent. Statistics were not computed. See table 11 for raw data values.

**Table 7.** Chemical and grain-size analyses for sediments from detention basins that drain industial, commercial, and residential basins

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | PH<br>WATER                                                                                                              | MOIS-                                                                                             | NITRO-<br>GEN, NH4                                                                                                                | NITRO-<br>GEN, NH4                                                                                                                                                                                                                           | NITRO-<br>GEN,                                                                                                                          | PHOS -<br>PHORUS                                                                                                 |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | WHOLE                                                                                                                    | TURE                                                                                              | TOTAL                                                                                                                             | + ORG.                                                                                                                                                                                                                                       | NO2+NO3                                                                                                                                 |                                                                                                                  |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | FIELD                                                                                                                    | CONTENT                                                                                           | IN BOT.                                                                                                                           | TOT IN                                                                                                                                                                                                                                       | TOT. IN                                                                                                                                 |                                                                                                                  |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | (STAND-                                                                                                                  | DRY WT.                                                                                           | MAT.                                                                                                                              | BOT MAT                                                                                                                                                                                                                                      | BOT MAT                                                                                                                                 | MAT.                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                                                                                                                              | ARD                                                                                                                      | (% OF                                                                                             | (MG/KG                                                                                                                            | (MG/KG                                                                                                                                                                                                                                       | (MG/KG                                                                                                                                  | (MG/KG                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | UNITS)                                                                                                                   | TOTAL)                                                                                            | AS N)                                                                                                                             | AS N)                                                                                                                                                                                                                                        | AS N)                                                                                                                                   | AS P)                                                                                                            |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | (00400)                                                                                                                  | (00495)                                                                                           | (00611)                                                                                                                           | (00626)                                                                                                                                                                                                                                      | (00633)                                                                                                                                 | (00668)                                                                                                          |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02-17-94                                                                                                                          | 7.1                                                                                                                      | 3                                                                                                 | 6.1                                                                                                                               | 1400                                                                                                                                                                                                                                         | 16                                                                                                                                      | 480                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03-03-94                                                                                                                          | 7.0                                                                                                                      | 3                                                                                                 | 15                                                                                                                                | 1800                                                                                                                                                                                                                                         | 6.0                                                                                                                                     | 840                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03-03-94                                                                                                                          | 6.8                                                                                                                      | 4                                                                                                 | 26                                                                                                                                | 720                                                                                                                                                                                                                                          | 10                                                                                                                                      | 480                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03-04-94                                                                                                                          | 7.1                                                                                                                      | 3                                                                                                 | 15                                                                                                                                | 3200                                                                                                                                                                                                                                         |                                                                                                                                         | 1100                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-08-94                                                                                                                          | 7.9                                                                                                                      | 5                                                                                                 | 11                                                                                                                                | 700                                                                                                                                                                                                                                          |                                                                                                                                         | 1100                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-10-94                                                                                                                          | 7.6                                                                                                                      | 3                                                                                                 | 12                                                                                                                                | 1000                                                                                                                                                                                                                                         | 13                                                                                                                                      | 970                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-30-94                                                                                                                          | 7.5                                                                                                                      | 4                                                                                                 | 6.5                                                                                                                               | 490                                                                                                                                                                                                                                          | 9.0                                                                                                                                     | 740                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| COMMERCIAL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-30-94                                                                                                                          | 7.6                                                                                                                      | 4                                                                                                 | 34<br>2.4                                                                                                                         | 570<br>360                                                                                                                                                                                                                                   | 7.0                                                                                                                                     | 730                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 4<br>INDUSTRIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02-17-94<br>03-02-94                                                                                                              | 7.6<br>6.6                                                                                                               | 3<br>4                                                                                            | 12                                                                                                                                | 360<br>2600                                                                                                                                                                                                                                  | 6.0<br>7.0                                                                                                                              | 700<br>1000                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03-02-94                                                                                                                          | 7.4                                                                                                                      | 2                                                                                                 | 4.1                                                                                                                               | 1400                                                                                                                                                                                                                                         | 12                                                                                                                                      | 710                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03-03-94                                                                                                                          | 7.2                                                                                                                      | 2                                                                                                 | 5.0                                                                                                                               | 870                                                                                                                                                                                                                                          | 9.0                                                                                                                                     | 920                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-08-94                                                                                                                          | 6.9                                                                                                                      | 4                                                                                                 | 19                                                                                                                                | 1600                                                                                                                                                                                                                                         |                                                                                                                                         | 1200                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-10-94                                                                                                                          | 7.2                                                                                                                      | 4                                                                                                 | 6.5                                                                                                                               | 1100                                                                                                                                                                                                                                         |                                                                                                                                         | 1300                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-15-94                                                                                                                          | 7.3                                                                                                                      | 2                                                                                                 | 12                                                                                                                                | 610                                                                                                                                                                                                                                          | 10                                                                                                                                      | 990                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| INDUSTRIAL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-29-94                                                                                                                          | 7.4                                                                                                                      | 2                                                                                                 | 8.4                                                                                                                               | 590                                                                                                                                                                                                                                          | <2.0                                                                                                                                    | 570                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02-16-94                                                                                                                          | 7.0                                                                                                                      | 3                                                                                                 | 14                                                                                                                                | 2200                                                                                                                                                                                                                                         | 6.0                                                                                                                                     | 1200                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02-17-94                                                                                                                          | 7.1                                                                                                                      | 2                                                                                                 | 4.5                                                                                                                               | 1300                                                                                                                                                                                                                                         | 14                                                                                                                                      | 620                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02-17-94                                                                                                                          | 7.0                                                                                                                      | 4                                                                                                 | 5.1                                                                                                                               | 570                                                                                                                                                                                                                                          | 9.0                                                                                                                                     | 630                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03-02-94                                                                                                                          | 6.5                                                                                                                      | 4                                                                                                 | 6.7                                                                                                                               | 1300                                                                                                                                                                                                                                         |                                                                                                                                         | 1100                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11-08-94                                                                                                                          | 7.8                                                                                                                      | 4                                                                                                 | 8.1                                                                                                                               | 640                                                                                                                                                                                                                                          | 4.0                                                                                                                                     | 940                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 8 RESIDENTIAL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11-10-94<br>12-15-94                                                                                                              | 7.3<br>6.9                                                                                                               | 4<br>2                                                                                            | 4.2<br>9.7                                                                                                                        | 410<br>1400                                                                                                                                                                                                                                  | <2.0<br>12                                                                                                                              | 980<br>1000                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| RESIDENTIAL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12-15-94                                                                                                                          | 7.0                                                                                                                      | 2                                                                                                 | 36                                                                                                                                | 2100                                                                                                                                                                                                                                         |                                                                                                                                         | 1900                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                          |                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                  |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                          |                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                  |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                          |
| STTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CARBON,                                                                                                                           | CARBON,                                                                                                                  | ARSENIC                                                                                           | CADMIUM                                                                                                                           | CHRO-                                                                                                                                                                                                                                        | COBALT,                                                                                                                                 | COPPER,                                                                                                          | LEAD,                                                                                                                                                     | MANGA-                                                                                                                                                                                                    | ZINC,                                                                                                                                    |
| SITE<br>NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INOR-                                                                                                                             | INORG +                                                                                                                  | TOTAL                                                                                             | RECOV.                                                                                                                            | MIUM,                                                                                                                                                                                                                                        | RECOV.                                                                                                                                  | RECOV.                                                                                                           | RECOV.                                                                                                                                                    | NESE,                                                                                                                                                                                                     | RECOV.                                                                                                                                   |
| SITE<br>NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                          |                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                              |                                                                                                                                         | RECOV.<br>FM BOT-                                                                                                | RECOV.<br>FM BOT-                                                                                                                                         |                                                                                                                                                                                                           | RECOV.<br>FM BOT-                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR-<br>GANIC,                                                                                                                   | INORG +<br>ORGANIC                                                                                                       | TOTAL<br>IN BOT-                                                                                  | RECOV.<br>FM BOT-                                                                                                                 | MIUM,<br>RECOV.<br>FM BOT-                                                                                                                                                                                                                   | RECOV.<br>FM BOT-                                                                                                                       | RECOV.<br>FM BOT-<br>TOM MA-                                                                                     | RECOV.                                                                                                                                                    | NESE,<br>RECOV.                                                                                                                                                                                           | RECOV.                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR-<br>GANIC,<br>TOT IN                                                                                                         | INORG + ORGANIC TOT. IN                                                                                                  | TOTAL<br>IN BOT-<br>TOM MA-                                                                       | RECOV.<br>FM BOT-<br>TOM MA-                                                                                                      | MIUM,<br>RECOV.<br>FM BOT-                                                                                                                                                                                                                   | RECOV.<br>FM BOT-<br>TOM MA-                                                                                                            | RECOV.<br>FM BOT-<br>TOM MA-                                                                                     | RECOV.<br>FM BOT-<br>TOM MA-                                                                                                                              | NESE,<br>RECOV.<br>FM BOT-                                                                                                                                                                                | RECOV.<br>FM BOT-<br>TOM MA-                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT                                                                                              | INORG + ORGANIC TOT. IN BOT MAT                                                                                          | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                                             | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                            | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-                                                                                                                                                                                                        | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                                  | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)                                                                       | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                                                    | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-                                                                                                                                                                     | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG                                                                                     | INORG + ORGANIC TOT. IN BOT MAT (GM/KG                                                                                   | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                    | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                                                   | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                                                                                                                              | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                                                         | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                                  | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                                                                           | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                                                                                                                                                           | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR- GANIC, TOT IN BOT MAT (G/KG AS C)                                                                                           | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)                                                                             | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)                                                         | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)                                                                                        | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)                                                                                                                                                                                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)                                                                                              | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)                                                                       | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)                                                                                                 | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)                                                                                                                                                 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)                                                                                               |
| NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)                                                                                   | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)                                                                     | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7                                            | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028)                                                              | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)                                                                                                                                                                         | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)                                                                                      | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)                                                               | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)                                                                                      | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)                                                                                                                                      | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)                                                                     |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9                                             | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693) 34 33 9.6                                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6                                          | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028)                                                              | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20                                                                                                                                                       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10                                                                            | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)<br>(01043)<br>40<br>30<br>20                           | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20                                                                   | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460                                                                                                                 | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140                                                |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9<br>5.1                                      | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42                                                       | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 6                                      | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028)<br>2<br>2<br>2<br><1                                         | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20                                                                                                                                                 | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038)<br>10<br>20<br>10                                                  | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50                                                  | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150                                                            | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420                                                                                                          | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220                                         |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9<br>5.1<br>2.2                               | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14                                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9                                      | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1                                                                   | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20                                                                                                                                                 | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038)<br>10<br>20<br>10<br>10                                            | RECOV. FM BOT- TOM MA- (UG/G AS CU) (01043)  40 30 20 50 30                                                      | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30                                                      | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660                                                                                                   | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140                                  |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6                                                           | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49                                                 | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8                                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2                                                                 | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20                                                                                                                                           | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038)<br>10<br>20<br>10<br>10<br>10                                      | RECOV. FM BOT- TOM MA- (UG/G AS CU) (01043)  40 30 20 50 30 50                                                   | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30<br>50                                                | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700                                                                                            | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530                           |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5 COMMERCIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5                                                       | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11                                              | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9                                  | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028)<br>2<br>2<br>2<br>1<br>1<br>1<br><1<br>2                     | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20                                                                                                                               | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038)<br>10<br>20<br>10<br>10<br>10<br>10                                | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30                                         | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30<br>50<br>20                                          | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550                                                                                     | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530<br>110                    |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9<br>5.1<br>2.2<br>3.6<br>3.5                 | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17                                           | TOTAL IN BOT - TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 6 9 8 9 12                            | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 1 <1                                                   | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                         | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 10 20 10 10                                                             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20                                      | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30<br>50<br>20                                          | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420                                                                              | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530<br>110<br>40              |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5 COMMERCIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9<br>5.1<br>2.2<br>3.6<br>3.5<br>10<br>1.5    | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11                                              | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9                                  | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028)<br>2<br>2<br>2<br>1<br>1<br>1<br><1<br>2                     | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20                                                                                                                               | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038)<br>10<br>20<br>10<br>10<br>10<br>10                                | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30                                         | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30<br>50<br>20                                          | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550                                                                                     | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530<br>110                    |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 industrial 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)<br>(00686)<br>1.2<br>12<br>0.9<br>5.1<br>2.2<br>3.6<br>3.5                 | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0                                       | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6                             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                          | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                         | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 10 10 10 10 10 10                                                       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 20                                | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01052)<br>110<br>20<br>20<br>150<br>30<br>50<br>20<br>10                                    | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480                                                                       | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530<br>110<br>40<br>70        |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 industrial 4 industrial 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1                                           | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5                           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 3                                                      | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>10<br>10                                                                                                                   | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 10 20 10 20 10 20 20                                                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90                                | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 220                                                                      | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540                                                                | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)<br>(01093)<br>280<br>100<br>140<br>220<br>140<br>530<br>110<br>40<br>70<br>470 |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3                                | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50                           | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 3 3 1 2                                                | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>10<br>10<br>40<br>30<br>20<br>30                                                                                                 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 10 20 20 20 20 20                                                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 20 20 20 90 80 70 60                          | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 40 60                                                                 | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470                                           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300                                    |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 6 industrial 4 INDUSTRIAL 2 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 8 INDUSTRIAL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4                            | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22                        | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12                 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 3 3 1 2 <1                                                | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>10<br>40<br>30<br>20<br>30<br>20                                                                                           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 10 20 20 20 20 20 20                                                 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 20 20 90 80 70 60 30                          | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 40 60 30                                                                 | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550                                    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170                                |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 6 inDUSTRIAL 4 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7                        | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16                     | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 6 9 8 9 12 6 5 9 6 14 12 9             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 3 3 1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1         | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>30<br>40<br>30<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 10 20 20 20 20 20 20 20                                              | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 20 20 90 80 70 60 30 40                       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 70 40 60 30 30 30                                                     | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700                             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180                            |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9                    | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24                  | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 6 9 8 9 12 6 5 9 6 14 12 9 7           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 2 <1 <1 <1 3 3 1 2 <1 <1 3 3 3 1 2 <1 3                | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 20 10                                              | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 20 20 90 80 70 60 30 40 110                   | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 70 40 60 30 30 30 70                                                     | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330                      | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240                        |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 industrial 4 industrial 3 industrial 2 industrial 1 industrial 5 industrial 5 industrial 6 industrial 6 industrial 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28                 | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61               | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 2 <1 <1 3 3 1 2 <1 <1 3 4                              | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 20 10 10                                           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90 80 70 60 30 40 110 40          | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 70 40 60 30 30 70 50                                                  | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330<br>190               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130                    |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 industrial 4 industrial 3 industrial 1 industrial 1 industrial 5 industrial 5 industrial 6 RESIDENTIAL 6 RESIDENTIAL 1 RESIDENTIAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28 0.5             | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61 25            | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9 7         | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 3 3 1 2 <1 <1 <1 3 4 1                                    | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 10 10 10                                           | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90 80 70 60 30 40 110 40 40       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 70 40 60 30 30 70 50 50 50                                            | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330<br>190<br>330        | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130 180                |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 4 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 RESIDENTIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28 0.5 1.8         | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61 25 7.7        | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9 7 6       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 2 <1 <1 3 3 1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>30<br>40<br>30<br>20<br>30<br>20<br>20<br>20                                                                               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90 80 70 60 30 40 110 40 40 20    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 70 40 60 30 30 70 50 50 20                                            | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330<br>190<br>330<br>400 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130 180 70             |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 1 RESIDENTIAL 1 RESIDENTIAL 1 RESIDENTIAL 1 RESIDENTIAL 3 RESIDENTIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28 0.5 1.8 1.7     | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61 25 7.7 14     | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9 7 6 11    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                          | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90 80 70 60 30 40 110 40 40 20 40 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 220 70 40 60 30 30 70 50 50 20 30 30 70 50 30 30 70 50 30 30 70 50 30 30 | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330<br>400<br>630        | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130 180 70 90          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 3 INDUSTRIAL 1 INDUS | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28 0.5 1.8 1.7 2.3 | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61 25 7.7        | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9 7 6       | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 2 <1 <1 3 3 1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>10<br>20<br>20<br>20<br>20<br>20<br>30<br>40<br>30<br>20<br>30<br>20<br>20<br>20                                                                               | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10             | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 20 20 90 80 70 60 30 40 110 40 40 20 40 30    | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 20 70 40 60 30 30 70 50 50 20                                            | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>540<br>360<br>480<br>470<br>550<br>700<br>330<br>190<br>330<br>400 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130 180 70 90 50       |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 iNDUSTRIAL 4 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 1 RESIDENTIAL 1 RESIDENTIAL 1 RESIDENTIAL 1 RESIDENTIAL 3 RESIDENTIAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INOR- GANIC, TOT IN BOT MAT (G/KG AS C) (00686)  1.2 12 0.9 5.1 2.2 3.6 3.5 10 1.5 <0.1 14 7.4 0.3 6.4 1.7 3.9 28 0.5 1.8 1.7     | INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C) (00693)  34 33 9.6 42 14 49 11 17 6.0 39 51 17 50 22 16 24 61 25 7.7 14 6.5 | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)  7 7 6 6 9 8 9 12 6 5 9 6 14 12 9 7 9 7 6 11 11 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)  2 2 <1 1 <1 2 <1 <1 <1 3 3 1 2 <1 <1 <1 1 <1                                  | MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01029)<br>30<br>20<br>20<br>20<br>20<br>10<br>40<br>30<br>20<br>30<br>20<br>20<br>20<br>20                                                                                     | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)  10 20 10 10 20 20 20 20 20 20 20 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)  40 30 20 50 30 50 30 20 20 90 80 70 60 30 40 110 40 40 20 40 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)  110 20 20 150 30 50 20 10 20 220 70 40 60 30 30 70 50 20 20 30 20 30 20                               | NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)<br>(01053)<br>400<br>530<br>460<br>420<br>660<br>700<br>550<br>420<br>480<br>470<br>550<br>700<br>330<br>190<br>330<br>400<br>630<br>530        | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)  280 100 140 220 140 530 110 40 70 470 220 170 300 170 180 240 130 180 70 90          |

**Table 7.** Chemical and grain-size analyses for sediments from detention basins that drain industial, commercial, and residential basins—Continued

| SITE<br>NAME                                                                                                                                                                                                                                                 | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) (01170)                                                                                                                                                    | (UG/G                                                                                                                                                 | THANE<br>IN BOT-                                                                                                      | TOTAL<br>IN BOT-                                                                                                              | ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39333)                                                                                                                                                                                                                                                                                                                                                 | CHLOR - DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39351)                                            | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39363)                  | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39368)                                                                                                                                                         | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39373)                                | DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39383) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                       | -12 00                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                      |                                                                                                                                                                                                                             |                                                                                                    |                                                          |
| COMMERCIAL 4<br>COMMERCIAL 1                                                                                                                                                                                                                                 | 13000<br>10000                                                                                                                                                                                              | 0.04<br>0.03                                                                                                                                          | <1.00<br><16.0                                                                                                        | <0.1<br><0.3                                                                                                                  | 0.2<br><0.4                                                                                                                                                                                                                                                                                                                                                                                          | <b>4</b> 7<br>10                                                                                      | <0.1<br><0.7                                                                         | 9.3<br>180                                                                                                                                                                                                                  | <0.6<br>5.9                                                                                        | 0.8<br>0.7                                               |
| COMMERCIAL 3                                                                                                                                                                                                                                                 | 13000                                                                                                                                                                                                       | 0.03                                                                                                                                                  | <3.00                                                                                                                 | <0.1                                                                                                                          | <0.3                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                    | <0.3                                                                                 | 3.4                                                                                                                                                                                                                         | <0.4                                                                                               | 0.7                                                      |
| COMMERCIAL 2                                                                                                                                                                                                                                                 | 12000                                                                                                                                                                                                       | 0.09                                                                                                                                                  | <22.0                                                                                                                 | <0.4                                                                                                                          | 2.4                                                                                                                                                                                                                                                                                                                                                                                                  | 34                                                                                                    | 3.4                                                                                  | 30                                                                                                                                                                                                                          | 24                                                                                                 | 4.4                                                      |
| COMMERCIAL 8<br>COMMERCIAL 5                                                                                                                                                                                                                                 | 15000<br>14000                                                                                                                                                                                              | 0.04<br>0.02                                                                                                                                          | <1.00<br><16.0                                                                                                        | <0.1<br><0.4                                                                                                                  | 0.7<br>0.3                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>35                                                                                              | 0.9<br>4.8                                                                           | 48<br>41                                                                                                                                                                                                                    | <0.1<br>5.2                                                                                        | 0.8<br>0.9                                               |
| COMMERCIAL 7                                                                                                                                                                                                                                                 | 15000                                                                                                                                                                                                       | 0.24                                                                                                                                                  | <2.00                                                                                                                 | <0.1                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0                                                                                                   | 0.9                                                                                  | 12                                                                                                                                                                                                                          | 1.0                                                                                                | 0.9                                                      |
| COMMERICAL 6                                                                                                                                                                                                                                                 | 12000                                                                                                                                                                                                       | 0.02                                                                                                                                                  | <2.00                                                                                                                 | <0.1                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                   | 0.7                                                                                  | 18                                                                                                                                                                                                                          | 4.0                                                                                                | 1.6                                                      |
| INDUSTRIAL 4<br>INDUSTRIAL 3                                                                                                                                                                                                                                 | 13000<br>18000                                                                                                                                                                                              | 0.02<br>0.07                                                                                                                                          | <1.00<br><1.00                                                                                                        | <0.1<br><0.7                                                                                                                  | 2.0<br>6.3                                                                                                                                                                                                                                                                                                                                                                                           | 5.0<br>270                                                                                            | <0.1<br>9.8                                                                          | 2.1<br>190                                                                                                                                                                                                                  | 0.7<br>9.9                                                                                         | 0.4<br>11                                                |
| INDUSTRIAL 2                                                                                                                                                                                                                                                 | 10000                                                                                                                                                                                                       | 0.07                                                                                                                                                  | <21.0                                                                                                                 | <0.7                                                                                                                          | 5.3                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                    | <0.6                                                                                 | 35                                                                                                                                                                                                                          | <2.4                                                                                               | 8.5                                                      |
| INDUSTRIAL 1                                                                                                                                                                                                                                                 | 12000                                                                                                                                                                                                       | 0.07                                                                                                                                                  | <1.00                                                                                                                 | <0.2                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                    | <3.9                                                                                 | 120                                                                                                                                                                                                                         | 12                                                                                                 | 3.9                                                      |
| INDUSTRIAL 8                                                                                                                                                                                                                                                 | 21000                                                                                                                                                                                                       | 0.02                                                                                                                                                  | <1.00                                                                                                                 | <0.4                                                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                    | 0.7                                                                                  | 5.3                                                                                                                                                                                                                         | <0.1                                                                                               | <0.4                                                     |
| INDUSTRIAL 5<br>INDUSTRIAL 7                                                                                                                                                                                                                                 | 15000<br>15000                                                                                                                                                                                              | 0.03<br>0.03                                                                                                                                          | <1.00<br><2.00                                                                                                        | <0.3<br><0.2                                                                                                                  | 0.3<br>0.5                                                                                                                                                                                                                                                                                                                                                                                           | 8.0<br>21                                                                                             | 0.7<br>1.3                                                                           | 5.2<br>8.0                                                                                                                                                                                                                  | 0.3<br>1.7                                                                                         | <0.8<br>2.0                                              |
| INDUSTRIAL 6                                                                                                                                                                                                                                                 | 13000                                                                                                                                                                                                       | 0.02                                                                                                                                                  | <2.00                                                                                                                 | <0.3                                                                                                                          | <1.0                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0                                                                                                   | 1.2                                                                                  | 6.9                                                                                                                                                                                                                         | 2.2                                                                                                | <0.8                                                     |
| RESIDENTIAL 1                                                                                                                                                                                                                                                | 4800                                                                                                                                                                                                        | 0.38                                                                                                                                                  | <7.00                                                                                                                 | <0.1                                                                                                                          | 2.7                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                    | <1.2                                                                                 | 20                                                                                                                                                                                                                          | <2.0                                                                                               | 3.5                                                      |
| RESIDENTIAL 4 RESIDENTIAL 3                                                                                                                                                                                                                                  | 13000                                                                                                                                                                                                       | 0.06                                                                                                                                                  | <28.0                                                                                                                 | <0.7                                                                                                                          | 0.7                                                                                                                                                                                                                                                                                                                                                                                                  | 950<br>21                                                                                             | <3.0                                                                                 | 12                                                                                                                                                                                                                          | 0.9                                                                                                | 2.7                                                      |
| RESIDENTIAL 2                                                                                                                                                                                                                                                | 10000<br>18000                                                                                                                                                                                              | 0.02<br>0.04                                                                                                                                          | <1.00<br><19.0                                                                                                        | <0.1<br><0.3                                                                                                                  | <0.1<br><0.4                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                    | <0.1<br>4.0                                                                          | 1.8<br>180                                                                                                                                                                                                                  | 0.2<br>6.4                                                                                         | 0.7<br>3.6                                               |
| RESIDENTIAL 7                                                                                                                                                                                                                                                | 15000                                                                                                                                                                                                       | 0.04                                                                                                                                                  | <6.00                                                                                                                 | <0.3                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                    | 3.6                                                                                  | 54                                                                                                                                                                                                                          | 4.5                                                                                                | 0.8                                                      |
| RESIDENTIAL 8                                                                                                                                                                                                                                                | 17000                                                                                                                                                                                                       | <0.01                                                                                                                                                 | <1.00                                                                                                                 | <0.1                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                  | <1.00                                                                                                 | 0.2                                                                                  | 0.7                                                                                                                                                                                                                         | 0.2                                                                                                | <0.8                                                     |
| RESIDENTIAL 5<br>RESIDENTIAL 6                                                                                                                                                                                                                               | 15000<br>12000                                                                                                                                                                                              | 0.04<br>1.2                                                                                                                                           | <10.0<br><8.00                                                                                                        | <0.7<br><0.5                                                                                                                  | 1.5<br>0.9                                                                                                                                                                                                                                                                                                                                                                                           | 170<br>800                                                                                            | 9.0<br>42                                                                            | 24<br>140                                                                                                                                                                                                                   | 3.7<br>4.1                                                                                         | 5.4<br>69                                                |
|                                                                                                                                                                                                                                                              | 22000                                                                                                                                                                                                       | 2                                                                                                                                                     |                                                                                                                       |                                                                                                                               | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                      | -10                                                                                                                                                                                                                         |                                                                                                    |                                                          |
|                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                      |                                                                                                                                                                                                                             |                                                                                                    |                                                          |
|                                                                                                                                                                                                                                                              | ENDDIN                                                                                                                                                                                                      | HEPTA-                                                                                                                                                | HEPTA-                                                                                                                | I TAIDANE                                                                                                                     | TOXA-                                                                                                                                                                                                                                                                                                                                                                                                | Dan                                                                                                   | Dan                                                                                  | METH-                                                                                                                                                                                                                       | MIDEY                                                                                              |                                                          |
| SITE                                                                                                                                                                                                                                                         | ENDRIN,                                                                                                                                                                                                     | CHLOR,                                                                                                                                                | CHLOR                                                                                                                 | LINDANE<br>TOTAL                                                                                                              | PHENE,                                                                                                                                                                                                                                                                                                                                                                                               | PCB,                                                                                                  | PCN,<br>TOTAL                                                                        | OXY-                                                                                                                                                                                                                        | MIREX,                                                                                             | ,                                                        |
| SITE<br>NAME                                                                                                                                                                                                                                                 | ENDRIN,<br>TOTAL<br>IN BOT-                                                                                                                                                                                 | CHLOR,                                                                                                                                                | CHLOR<br>EPOXIDE                                                                                                      | TOTAL                                                                                                                         | PHENE,                                                                                                                                                                                                                                                                                                                                                                                               | PCB,<br>TOTAL<br>IN BOT-                                                                              | TOTAL                                                                                | OXY-<br>CHLOR,                                                                                                                                                                                                              | TOTAL                                                                                              |                                                          |
|                                                                                                                                                                                                                                                              | TOTAL<br>IN BOT-<br>TOM MA-                                                                                                                                                                                 | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-                                                                                                                 | CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM                                                                                 | TOTAL<br>IN BOT-<br>TOM MA-                                                                                                   | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-                                                                                                                                                                                                                                                                                                                                                                | TOTAL<br>IN BOT-<br>TOM MA-                                                                           | TOTAL<br>IN BOT-<br>TOM MA-                                                          | OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM                                                                                                                                                                                         | TOTAL<br>I IN BOT<br>I TOM MA                                                                      |                                                          |
|                                                                                                                                                                                                                                                              | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                                                                                                                                                       | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                                                                                       | CHLOR EPOXIDE TOT. IN BOTTOM MATL.                                                                                    | TOTAL IN BOT- TOM MA- TERIAL                                                                                                  | PHENE, TOTAL IN BOT- TOM MA- TERIAL                                                                                                                                                                                                                                                                                                                                                                  | TOTAL IN BOT- TOM MA- TERIAL                                                                          | TOTAL IN BOT- TOM MA- TERIAL                                                         | OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.                                                                                                                                                                                | TOTAL IN BOT TOM MA TERIAL                                                                         | <b>-</b><br>-                                            |
|                                                                                                                                                                                                                                                              | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                            | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                            | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                                                                                          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                                                                                                                                                                                                                                                                                                                                                                 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                                                 | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)                                                                                                                                                                                    | TOTAL IN BOT TOM MA TERIAL (UG/KG)                                                                 |                                                          |
| NAME                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)                                                                                                                                                                | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)                                                                                 | CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)<br>(39423)                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)                                                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)                                                                                                                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)                                                          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)                                         | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)                                                                                                                                                                            | TOTAL I IN BOT- I TOM MA- TERIAL (UG/KG) (39758)                                                   |                                                          |
| NAME COMMERCIAL 4                                                                                                                                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393) <0.3                                                                                                                                                           | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)                                                                                 | CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)<br>(39423)                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343) E0.4                                                                             | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)                                                                                                                                                                                                                                                                                                                                | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39519)                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)                                         | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)                                                                                                                                                                            | TOTAL I IN BOT- I TOM MA- TERIAL (UG/KG) (39758)                                                   |                                                          |
| NAME                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)                                                                                                                                                                | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)                                                                                 | CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)<br>(39423)                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)                                                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)                                                                                                                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)                                                          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)                                         | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)                                                                                                                                                                            | TOTAL I IN BOT- I TOM MA- TERIAL (UG/KG) (39758)                                                   |                                                          |
| COMMERCIAL 4                                                                                                                                                                                                                                                 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393) <0.3 2.2                                                                                                                                                       | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3                                                                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3                                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343) E0.4 <0.1                                                                        | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)                                                                                                                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519) 14 2                                                     | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0                               | OXY-<br>CHLOR,<br>TOT. IN<br>BOTTON<br>MATL.<br>(UG/KG)<br>(39481)<br><170<br><0.7                                                                                                                                          | TOTAL I IN BOT- I TOM MA- TERIAL (UG/KG) (39758) <0.1                                              |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8                                                                                                                                                                                             | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393) <0.3 2.2 <0.3 <1.3 <0.1                                                                                                                                        | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.2<br><0.1                                         | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423)  <0.2 0.3 <0.1 0.9 <0.1                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1                                                        | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40                                                                                                                                                                                                                                                                                                                                       | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0           | OXY-<br>CHLOR,<br>TOT. IN<br>BOTTON<br>MATL.<br>(UG/KG)<br>(39481)<br><170<br><0.7<br><2.9<br><9.0<br><4.0                                                                                                                  | TOTAL IN BOT- I TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.3 <0.1                           |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5                                                                                                                                                                                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10                                                                                                                                   | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.2<br><0.1<br><0.2                                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) < 0.2 0.3 < 0.1 0.9 < 0.1 0.2                                      | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 0.3                                                    | TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39403)  20 160 <10 80 40 140                                                                                                                                                                                                                                                                                                                                   | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481) <170 <0.7 <2.9 <9.0 <4.0 <6.0                                                                                                                                              | TOTAL IN BOT- ITOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1                  |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5 COMMERCIAL 7                                                                                                                                                                   | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0                                                                                                                              | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.2<br><0.1<br><0.1                                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 0.3 <0.1                                               | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10                                                                                                                                                                                                                                                                                                                                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2                                       | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481) <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0                                                                                                                                         | TOTAL IN BOT- ITOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1             |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5                                                                                                                                                                                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10                                                                                                                                   | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.2<br><0.1<br><0.2                                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.2 <0.1 <0.1 <0.1                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 0.3                                                    | TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39403)  20 160 <10 80 40 140                                                                                                                                                                                                                                                                                                                                   | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481) <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4                                                                                                                                    | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9                                                                                                               | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 <0.3 <0.1 <0.1 <0.1 <0.3                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10 50 10 80                                                                                                                                                                                                                                                                                                                       | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58                                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1                                                                                                                         | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 2                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9                                                                                                               | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.2<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 0.3 <0.1 <0.1 <0.1 <0.3                                     | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10 50 10 80 30                                                                                                                                                                                                                                                                                                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34                             | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8                                                                                                                    | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 2 INDUSTRIAL 1                                                                                                               | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9                                                                                                          | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                         | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 0.3 <0.1 <0.1 <0.1 <0.3                                     | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10 50 10 80 30 50                                                                                                                                                                                                                                                                                                                 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3                                                                                                               | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 2                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9                                                                                                               | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.2<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1                 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 0.3 <0.1 <0.1 <0.1 <0.3                                     | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10 50 10 80 30                                                                                                                                                                                                                                                                                                                    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34                             | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0                                                                                                          | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 5                                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0                                                                                      | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1         | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423)  <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>30<br>50<br>10                                                                                                                                                                                                                                               | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22                   | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <6.0                                                                                           | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 4 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7                                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <3.0                                                                                      | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423)  <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                     | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>30<br>50<br>10<br><10<br>20                                                                                                                                                                                                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22 22                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <0.0 <1.6 <0.0 <1.6 <0.0 <2.4 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0                       | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7 INDUSTRIAL 1 RESIDENTIAL 1                                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <0.8 <0.6                                                                            | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.3<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423)  <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                     | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>30<br>50<br>10<br><10<br>20<br>20                                                                                                                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22 22 160            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <1.6 <6.0 <2.4 <1.0                                                                            | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 4 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 7                                                           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <3.0                                                                                      | CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39413)<br><0.1<br><0.2<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423)  <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                     | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>30<br>50<br>10<br><10<br>20                                                                                                                                                                                                                                  | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22 22                | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <1.0 <1.0                                                                                 | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 4 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 1 RESIDENTIAL 3 RESIDENTIAL 2 RESIDENTIAL 2               | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <0.6 <1.4 <0.1 <0.8                                                             | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39413)  <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1           | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)  20 160 <10 80 40 140 10 50 10 80 30 50 10 <10 20 20 180 <10 80                                                                                                                                                                                                                                                                                         | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22 2 1 60 10 2 5     | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <1.0 <7.0 <0.6                                                                            | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 RESIDENTIAL 3 RESIDENTIAL 7                             | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <1.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <0.6 <1.4 <0.1 <0.8 <4.0      | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39413)  <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>40<br>180<br><10<br>80<br>60                                                                                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 158 34 8 E6 5 22 22 160 10 2 5 3    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <1.0 <7.0 <1.0 <7.0 <1.6 <1.6 <1.6 <1.6 <1.0 <7.0 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 5 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 RESIDENTIAL 3 RESIDENTIAL 3 RESIDENTIAL 7 RESIDENTIAL 7 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <1.4 <0.1 <0.1 <0.2 <2.0 <3.0 <0.6 <1.4 <0.1 <0.1 <0.8 <4.0 <0.1 <0.8 <4.0 <0.1 | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39413)  <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                    | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>30<br>50<br>10<br><10<br>20<br>20<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>40<br>10<br>80<br>40<br>10<br>80<br>40<br>10<br>80<br>40<br>10<br>80<br>40<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 1 58 34 8 E6 5 22 22 160 10 2 5 3 1 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <1.0 <1.0 <7.0 <7.0 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6                                    | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |
| COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 5 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 1 INDUSTRIAL 1 INDUSTRIAL 5 INDUSTRIAL 5 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 RESIDENTIAL 3 RESIDENTIAL 7                             | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39393)  <0.3 2.2 <0.3 <1.3 <0.1 <10 <2.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <1.0 <0.8 <0.1 <0.9 <0.9 <0.7 <0.1 <0.2 <2.0 <3.0 <0.6 <1.4 <0.1 <0.8 <4.0      | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39413)  <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) (39423) <0.2 0.3 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1          | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39343)  E0.4 <0.1 <0.3 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                | PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)<br>(39403)<br>20<br>160<br><10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>40<br>140<br>10<br>50<br>10<br>80<br>40<br>180<br><10<br>80<br>60                                                                                                                                                                                            | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)  14 2 2 110 E4 6 2 2 158 34 8 E6 5 22 22 160 10 2 5 3    | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39251)  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1. | OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) (39481)  <170 <0.7 <2.9 <9.0 <4.0 <6.0 <2.4 <2.8 <7.1 <1.8 <3.3 <4.0 <1.6 <6.0 <2.4 <1.0 <1.0 <7.0 <7.0 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6                                    | TOTAL IN BOT- IN TOM MA- TERIAL (UG/KG) (39758)  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.            |                                                          |

**Table 7.** Chemical and grain-size analyses for sediments from detention basins that drain industial, commercial, and residential basins—Continued

SEDIMENT SIZE ANALYSES BED BED BED BED BED BED BED MAT. MAT. MAT. MAT. MAT. MAT. MAT. FALL FALL FALL FALL FALL FALL FALL DIAM.DW DIAM. DIAM.DW DIAM.DW DIAM. DIAM. DIAM. SITE % FINER NAME THAN THAN THAN THAN THAN THAN THAN .002 MM .004 MM MM 800. .031 MM .062 MM .125 MM .250 MM (80157) (80293) (80283) (80158) (80159) (80294)(80160)COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5 COMMERCIAL 7 COMMERCIAL 6 INDUSTRIAL 4 INDUSTRIAL 3 INDUSTRIAL 2 INDUSTRIAL 1 INDUSTRIAL 8 INDUSTRIAL 5 INDUSTRIAL 7 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 RESIDENTIAL 3 RESIDENTIAL 2 RESIDENTIAL 7 RESIDENTIAL 8 RESIDENTIAL 5 RESIDENTIAL 6 BED BED BED BED BED BED MAT. MAT. MAT. MAT. MAT. MAT. FALL FALL FALL FALL FALL FALL DIAM.DW DIAM. DIAM.DW DIAM.DW DIAM. DIAM. SITE % FINER % FINER % FINER FINER % FINER % FINER THAN THAN THAN THAN THAN THAN NAME .500 MM 1.00 MM 1.00 MM 2.00 MM 4.00 MM 8.00 MM (80161) (80162) (80168) (80169) (80170) (80171) COMMERCIAL 4 COMMERCIAL 1 COMMERCIAL 3 - -COMMERCIAL 2 COMMERCIAL 8 COMMERCIAL 5 - -COMMERCIAL 7 - -COMMERCIAL 6 INDUSTRIAL 4 - -INDUSTRIAL 3 INDUSTRIAL 2 INDUSTRIAL 1 - -INDUSTRIAL 8 INDUSTRIAL 5 - -- -INDUSTRIAL 7 INDUSTRIAL 6 RESIDENTIAL 1 RESIDENTIAL 4 - -RESIDENTIAL 3 RESIDENTIAL 2 RESIDENTIAL 7 - -

RESIDENTIAL 8

RESIDENTIAL 5

RESIDENTIAL 6

- -

**Table 8**. Chemical analyses for subsurface sediments collected from selected detention basins to determine background concentrations of inorganic constituents

| SITE NAME      | DATE     |                                                                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS)<br>(01003)          | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD)<br>(01028) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029) | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO)<br>(01038) | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)<br>(01043) |
|----------------|----------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| RESIDENTIAL 1T | 08-02-94 |                                                                               | 10                                                                                      | 1                                                                               | 10                                                       | 20                                                                              | 20                                                                              |
| INDUSTRIAL 2   | 08-02-94 |                                                                               | 8                                                                                       | <1                                                                              | 10                                                       | 10                                                                              | 30                                                                              |
| RESIDENTIAL 3  | 08-02-94 |                                                                               | 15                                                                                      | 1                                                                               | 30                                                       | 20                                                                              | 50                                                                              |
| RESIDENTIAL 4  | 08-02-94 |                                                                               | 7                                                                                       | <1                                                                              | 10                                                       | 10                                                                              | 20                                                                              |
| RESIDENTIAL 2  | 08-02-94 |                                                                               | 12                                                                                      | <1                                                                              | 40                                                       | 20                                                                              | 40                                                                              |
| INDUSTRIAL 3   | 08-05-94 |                                                                               | 7                                                                                       | <1                                                                              | 20                                                       | 10                                                                              | 20                                                                              |
|                |          | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)<br>(01043) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS MN)<br>(01052) | NICKEL,<br>RECOV.<br>FM BOT<br>TOM MA<br>TERIAL<br>(UG/G<br>AS NI)<br>(01068)   | RECOV FM BOT TOM MA- TERIAL (UG/G AS ZN)                 | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) (01170)                        | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG)<br>(71921) |
| RESIDENTIAL 1T |          | 30                                                                            | 250                                                                                     | 20                                                                              | 50                                                       | 7000                                                                            | 0.02                                                                            |
| INDUSTRIAL 2   |          | 40                                                                            | 300                                                                                     | 30                                                                              | 80                                                       | 11000                                                                           | 0.03                                                                            |
| RESIDENTIAL 3  |          | 170                                                                           | 580                                                                                     | 40                                                                              | 220                                                      | 14000                                                                           | 0.04                                                                            |
| RESIDENTIAL 4  |          | 20                                                                            | 350                                                                                     | 20                                                                              | 40                                                       | 11000                                                                           | 0.02                                                                            |
| RESIDENTIAL 2  |          | 20                                                                            | 680                                                                                     | 40                                                                              | 70                                                       | 24000                                                                           | 0.02                                                                            |
| INDUSTRIAL 3   |          | 20                                                                            | 480                                                                                     | 20                                                                              | 70                                                       | 22000                                                                           | 0.02                                                                            |

**Table 9**. Chemical analyses for discrete samples from Residential 4 to assess spatial variability of selected constituents

|                  | PH      |         | NITRO-   | NITRO-   | NITRO-  | PHOS-   | CARBON, |
|------------------|---------|---------|----------|----------|---------|---------|---------|
|                  | WATER   | MOIS-   | GEN, NH4 | GEN, NH4 | GEN,    | PHORUS  | INOR-   |
|                  | WHOLE   | TURE    | TOTAL    | + ORG.   | NO2+NO3 | TOTAL   | GANIC,  |
|                  | FIELD   | CONTENT | IN BOT.  | TOT IN   | TOT. IN | IN BOT. | TOT IN  |
|                  | (STAND- | DRY WT. | MAT.     | BOT MAT  | BOT MAT | MAT.    | BOT MAT |
| SITE             | ARD     | (% OF   | (MG/KG   | (MG/KG   | (MG/KG  | (MG/KG  | (G/KG   |
| NAME             | UNITS)  | TOTAL)  | AS N)    | AS N)    | AS N)   | AS P)   | AS C)   |
|                  | (00400) | (00495) | (00611)  | (00626)  | (00633) | (00668) | (00686) |
| Residential 4.1  | 7.1     | 2       | 7.5      | 690      | 73      | 670     | 2.7     |
| Residential 4.2  | 6.9     | 2       | 15       | 400      | 16      | 620     | 3.7     |
| Residential 4.3  | 7.0     | 1       | 7.6      | 430      | 18      | 560     | 1.4     |
| Residential 4.4  | 6.7     | 3       | 10       | 650      | 14      | 620     | 1.0     |
| Residential 4.5  | 6.9     | 3       | 8.4      | 530      | 26      | 540     | 2.4     |
| Residential 4.6  | 7.0     | 4       | 6.8      | 580      | 14      | 480     | 1.5     |
| Residential 4.7  | 6.8     | 2       | 14       | 530      | 23      | 640     | 0.3     |
| Residential 4.8  | 6.9     | 2       | 8.2      | 490      | 12      | 550     | 0.4     |
| Residential 4.9  | 6.9     | 4       | 9.0      | 810      | 49      | 620     | 0.3     |
| Residential 4.10 | 6.9     | 2       | 13       | 150      | 10      | 600     | 0.4     |

**Table 9.** Chemical analyses for discrete samples from Residential 4 to assess spatial variability of selected constituents—Continued

|                                    | INORG +<br>ORGANIC | TOTAL<br>IN BOT-   |                  | CHRO- MIUM, RECOV. MBOT- TOM MA- | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL |               |                |                 | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL |
|------------------------------------|--------------------|--------------------|------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------|---------------|----------------|-----------------|-------------------------------------------------|
| SITE                               | (GM/KG             | (UG/G              | (UG/G            | TERIAL                           | (UG/G                                             | (UG/G                                             | (UG/G         | TERIAL         | (UG/G           | (UG/G                                           |
| NAME                               | AS C)              | AS AS)             | AS CD)           | (UG/G)                           | AS CO)                                            | AS CU)                                            | AS PB)        | (UG/G)         | AS ZN)          | AS FE)                                          |
|                                    | (00693)            | (01003)            | (01028)          | (01029)                          | (01038)                                           | (01043)                                           | (01052)       | (01053)        | (01093)         | (01170)                                         |
|                                    | 2.0                |                    |                  | 20                               | 10                                                | 50                                                | 00            | 400            | 100             | 12000                                           |
| Residential 4.1                    | 26                 | 4                  | <1<br><1         | 20<br>10                         | 10<br>10                                          | 50<br>40                                          | 80<br>60      | 480            | 190             | 13000                                           |
| Residential 4.2<br>Residential 4.3 | 14<br>18           | 7<br>5             | <1<br><1         | 20                               | 10                                                | 30                                                | 60<br>30      | 350<br>320     | 180<br>110      | 14000<br>14000                                  |
| Residential 4.5                    | 10                 | ,                  | -1               | 20                               | 10                                                | 30                                                | 30            | 320            | 110             | 14000                                           |
| Residential 4.4                    | 18                 | 6                  | <1               | 20                               | 10                                                | 170                                               | 50            | 350            | 140             | 13000                                           |
| Residential 4.5                    | 15                 | 6                  | <1               | 20                               | 10                                                | 30                                                | 50            | 430            | 120             | 15000                                           |
|                                    |                    |                    |                  |                                  |                                                   |                                                   |               |                |                 |                                                 |
| Residential 4.6                    | 22                 | 6                  | <1               | 20                               | 10                                                | 30                                                | 30            | 320            | 100             | 13000                                           |
| Residential 4.7                    | 32                 | 6                  | <1               | 20                               | 10                                                | 50                                                | 60            | 360            | 210             | 16000                                           |
| Residential 4.8                    | 20                 | 6                  | <1               | 20                               | 10                                                | 40                                                | 60            | 290            | 150             | 13000                                           |
| Residential 4.9                    | 21                 | 6                  | <1               | 20                               | 10                                                | 50                                                | 50            | 400            | 170             | 17000                                           |
| Residential 4.10                   | 28                 | 6                  | <1               | 20                               | 10                                                | 30                                                | 40            | 440            | 90              | 14000                                           |
|                                    | MERCURY            |                    | ENDO-            |                                  | CHLOR-                                            |                                                   |               |                | DI-             |                                                 |
|                                    | RECOV.             | PER-               | SULFAN,          | ALDRIN,                          | DANE,                                             | DDD,                                              | DDE,          | DDT,           | ELDRIN,         |                                                 |
|                                    | FM BOT-            | THANE              | TOTAL            | TOTAL                            | TOTAL                                             | TOTAL                                             | TOTAL         | TOTAL          | TOTAL           |                                                 |
|                                    | TOM MA-            | IN BOT-            | IN BOT-          | IN BOT-                          | IN BOT-                                           | IN BOT-                                           | IN BOT-       | IN BOT-        | IN BOT-         |                                                 |
|                                    | TERIAL             | TOM MA-            | TOM MA-          | TOM MA-                          | TOM MA-                                           | TOM MA-                                           | TOM MA-       | TOM MA-        | TOM MA-         |                                                 |
| SITE                               | (UG/G              | TERIAL             | TERIAL           | TERIAL                           | TERIAL                                            | TERIAL                                            | TERIAL        | TERIAL         | TERIAL          |                                                 |
| NAME                               | AS HG)             | (UG/KG)            | (UG/KG)          | (UG/KG)                          | (UG/KG)                                           | (UG/KG)                                           | (UG/KG)       | (UG/KG)        | (UG/KG)         |                                                 |
|                                    | (71921)            | (81886)            | (39389)          | (39333)                          | (39351)                                           | (39363)                                           | (39368)       | (39373)        | (39383)         |                                                 |
| Residential 4.1                    | 0.05               | <6.00              | <2.0             | <0.1                             | 410                                               | 27                                                | 7.9           | 4.9            | 3.5             |                                                 |
| Residential 4.2                    | 0.05               | <6.00              | <2.0             | <0.8                             | 620                                               | 34                                                | 13            | 4.6            | 4.0             |                                                 |
| Residential 4.3                    | 0.03               | <5.00              | <1.0             | <0.1                             | 320                                               | 22                                                | 12            | 4.5            | 1.9             |                                                 |
| Residential 4.4                    | 0.03               | <5.00              | <2.0             | 2.7                              | 350                                               | 20                                                | 14            | 2.8            | 17              |                                                 |
| Residential 4.5                    | 0.03               | <7.00              | 1.0              | 0.4                              | 770                                               | 38                                                | 12            | 4.2            | 5.2             |                                                 |
| Residential 4.6                    | 0.04               | <3.00              | <1.0             | <0.2                             | 270                                               | 18                                                | 7.8           | 2.6            | 1.6             |                                                 |
| Residential 4.7                    | 0.05               | <6.00              | <1.0             | <0.6                             | 660                                               | 36                                                | 14            | 5.5            | 0.4             |                                                 |
| Residential 4.8                    | 0.04               | <6.00              | <2.0             | <1.0                             | 720                                               | 37                                                | 12            | 4.4            | 3.9             |                                                 |
| Residential 4.9                    | 0.05               | <9.00              | <3.0             | <2.0                             | 760                                               | 38                                                | 13            | 4.3            | 4.1             |                                                 |
| Residential 4.10                   | 0.02               | <4.00              | <0.4             | 0.3                              | 390                                               | 26                                                | 8.6           | 3.6            | 2.9             |                                                 |
|                                    |                    |                    |                  |                                  |                                                   |                                                   |               |                |                 |                                                 |
|                                    | ENDETA             | HEPTA-             | HEPTA-           | TANDAN                           | TOXA-                                             |                                                   | DOM           | METH-          | WIDEV           |                                                 |
|                                    | ENDRIN<br>TOTAL    | N, CHLOR,<br>TOTAL | CHLOR<br>EPOXIDE | LINDAN<br>TOTAL                  |                                                   |                                                   | PCN,<br>TOTAL | OXY-<br>CHLOR, | MIREX,<br>TOTAL |                                                 |
|                                    | IN BOT             |                    |                  |                                  |                                                   |                                                   |               |                |                 | r-                                              |
|                                    | TOM MA             |                    |                  |                                  |                                                   |                                                   |               |                |                 |                                                 |
| SITE                               | TERIAI             |                    |                  | TERIA                            |                                                   |                                                   |               |                | TERIAL          |                                                 |
| NAME                               | (UG/K              | G) (UG/KG          | ) (UG/KG         | ) (UG/K                          | G) (UG/K                                          | G) (UG/K                                          | 3) (UG/KG     | ) (UG/KG       | (UG/KG)         |                                                 |
|                                    | (39393             | 3) (39413          | ) (39423         | ) (3934                          | 3) (3940                                          | 3) (3951                                          | 9) (39251     | .) (39481      | ) (39758        | 3)                                              |
| Residential 4.1                    | <2.0               | 0.3                | 4.6              | 0.1                              | 10                                                | 8                                                 | <1.0          | <0.8           | <0.1            |                                                 |
| Residential 4.1                    | <1.0               |                    | 5.6              | 0.2                              |                                                   | 10                                                | <1.0          | <0.8           | <0.1            |                                                 |
| Residential 4.3                    | <0.9               |                    | 3.7              | 0.2                              |                                                   | 7                                                 | <1.0          | <0.8           | <0.1            |                                                 |
| Residential 4.4                    | <0.9               |                    | 2.9              | 0.1                              |                                                   | 7                                                 | <1.0          | <0.8           | <0.1            |                                                 |
| Residential 4.5                    | <2.0               |                    | 4.4              | 0.3                              |                                                   | 6                                                 | <1.0          | <1.4           | <0.1            |                                                 |
| B1417 5 6 6                        |                    |                    |                  | -0.0                             | -4.0                                              | -                                                 | .4 ^          | -4 0           | -0 -            |                                                 |
| Residential 4.6                    | <0.6               |                    | 2.3              | <0.2                             |                                                   | 5<br>10                                           | <1.0          | <4.0           | <0.1            |                                                 |
| Residential 4.7<br>Residential 4.8 | <1.1<br><2.0       |                    | 6.4<br>5.4       | 0.3                              |                                                   | 10<br>7                                           | <1.0<br><1.0  | <4.0<br><4.0   | <0.1<br><0.1    |                                                 |
| Residential 4.9                    | <2.0               |                    | 5.4              | 0.3                              |                                                   | 8                                                 | <1.0          | <4.0           | <0.1            |                                                 |
| Residential 4.10                   | <0.3               |                    | 2.8              | <0.2                             |                                                   | 4                                                 | <1.0          | <4.0           | <0.1            |                                                 |
|                                    |                    |                    |                  | - 7-                             |                                                   | -                                                 |               |                |                 |                                                 |



Figure 2. pH in soil at basins Residential 1T and Residential 4.



Figure 3. Chemical-oxygen demand in soil at basins Residential 1T and Residential 4.



Figure 4. Nitrite plus organic nitrogen and phosphorus in soil at basin Residential 1T.



Figure 5. Nitrite plus organic nitrogen and phosphorus in soil at basin Residential 4.

20 Chemistry and Toxicity of Urban Sediments, Maricopa County, Arizona



Figure 6. Total nitrogen and nitrite plus nitrate in soil at basin Residential 1T.



Figure 7. Total nitrogen and nitrite plus nitrate in soil at basin Residential 4.



Figure 8. Copper, lead, and zinc in soil at basin Residential 1T.



Figure 9. Copper, lead, and zinc in soil at basin Residential 4.

**Table 10**. Chemical analyses for sediments collected from Residential 1T and Residential 4 from April 7 through August 31, 1994, to assess temporal variability of selected constituents

|               |                 |                      | 1                 | PH              |                | NITRO-          | NITRO-          | NITRO-          | Pl         | HOS- C          | .O.D.           |                 |
|---------------|-----------------|----------------------|-------------------|-----------------|----------------|-----------------|-----------------|-----------------|------------|-----------------|-----------------|-----------------|
|               |                 |                      |                   |                 | MOIS-          | GEN, NH4        | GEN, NH4        | GEN,            |            |                 | TOTAL           |                 |
| SITE          |                 |                      | W                 | HOLE            | TURE           | TOTAL           | + ORG.          | NO2+NO3         | T          | OTAL            | IN              |                 |
| NAME          |                 |                      |                   |                 |                | IN BOT.         | TOT IN          | TOT. IN         |            |                 | MOTTC           |                 |
|               |                 |                      |                   |                 | RY WT.         | MAT.            | BOT MAT         | BOT MAT         |            | MAT.            | MA-             |                 |
|               | D               | ATE                  |                   |                 | % OF<br>TOTAL) | (MG/KG<br>AS N) | (MG/KG<br>AS N) | (MG/KG<br>AS N) | (MG        |                 | ERIAL<br>MG/KG) |                 |
|               |                 |                      |                   |                 | 00495)         | (00611)         | (00626)         | (00633)         |            |                 | 00339)          |                 |
|               |                 |                      | (0)               |                 | 00133,         | (00011)         | (00020)         | (00033)         | (00        | (               | 003337          |                 |
| Residential 1 | т 04-0          | 07-94                |                   | 8.1             | 4              | 11              | 3300            | 4.0             | 1          | 000             | 90000           |                 |
|               | 04 - :          | 22-94                |                   | 7.3             | 3              | 20              | 3000            | 6.0             | •          | 780             | 84000           |                 |
|               | 05-0            | 06-94                |                   | 6.9             | 4              | 22              | 4800            | 12              | 1          | 300             | 120000          |                 |
|               |                 | 27-94                |                   | 7.3             | 5              | 14              | 3300            | 4.0             |            | 200             | 120000          |                 |
|               |                 | 11-94                |                   | 6.8             | 3              | 3.4             | 1400            | 7.0             |            | 100             | 180000          |                 |
|               | 08              | 31-94                |                   | 7.2             | 4              | 11              | 2700            | 8.0             |            | 750             | 120000          |                 |
| Residential 4 | 04-0            | 07-94                |                   | 7.5             | 3              | 5.2             | 1500            | 5.0             |            | 630             | 100000          |                 |
|               | 04-2            | 22-94                |                   | 6.8             | 4              | 11              | 1200            | 11              |            | 470             | 68000           |                 |
|               |                 | 06-94                |                   | 6.9             | 3              | 12              | 1800            | 14              |            | 690             | 98000           |                 |
|               |                 | 27-94                |                   | 7.1             | 2              | 16              | 960             | 10              |            | 550             | 79000           |                 |
|               |                 | 11-94                |                   | 6.5             | 3              | 11              | 850             | 25              |            | 590             | 110000          |                 |
|               | 08-3            | 31-94                |                   | 7.0             | 2              | 12              | 240             | 18              |            | 570             | 120000          |                 |
|               | ARSENIC         | CADMIUM              | CHRO-             | COBALT,         | COPPER         | , LEAD,         | MANG            | A- ZINC         | ,          | IRON,           | MERCURY         |                 |
|               | TOTAL           | RECOV.               | MIUM,             | RECOV.          | RECOV.         | RECOV           | . NESE          | , RECO          | v.         | RECOV.          | RECOV.          | PARA-           |
|               | IN BOT-         | FM BOT-              | RECOV.            | FM BOT-         | FM BOT         |                 |                 |                 |            | FM BOT-         | FM BOT-         | CHLORO-         |
|               | TOM MA-         | TOM MA-              | FM BOT-           | TOM MA-         | TOM MA         |                 |                 |                 |            | TOM MA-         | TOM MA-         | META            |
| SITE          | TERIAL          |                      | TOM MA-<br>TERIAL | TERIAL          | TERIAL         |                 |                 |                 |            | TERIAL          | TERIAL          | CRESOL          |
| NAME          | (UG/G<br>AS AS) | (UG/G<br>AS CD)      | (UG/G)            | (UG/G<br>AS CO) | (UG/G<br>AS CU | (UG/G<br>AS PI  |                 |                 |            | (UG/G<br>AS FE) | (UG/G<br>AS HG) | BOT.MAT (UG/KG) |
|               | (01003)         | (01028)              | (01029)           | (01038)         | (01043         |                 |                 |                 |            | (01170)         | (71921)         | (34455)         |
|               | ,               | ,                    | ,                 | ,               | ,              | , ,             | , , ,           | . , , ,         |            |                 | ,,              | ,               |
| Residental 1T |                 | 2                    | 10                | 10              | 30             | 40              |                 |                 | 100        | 6800            | 0.03            | <600            |
|               | 6<br>5          | 2<br>2               | 10                | 10              | 20             | 50<br>50        |                 | 260             | 90         | 5200            | 0.02            | <600            |
|               | 5<br>4          | 2                    | 20<br>10          | 10<br>20        | 30<br>30       | 50<br>40        |                 |                 | 130<br>110 | 7900<br>11000   | 0.04            | <600<br><600    |
|               | 6               | 2                    | 10                | 20              | 30             | 50              |                 |                 | 130        | 11000           | 0.05            | <600<br><600    |
|               | 5               | 1                    | 10                | 10              | 20             | 30              |                 | 260             | 80         | 6000            | 0.05            | <600            |
|               |                 |                      |                   |                 |                |                 |                 |                 |            |                 |                 |                 |
| Residential 4 | 5               | <1                   | 20                | 10              | 40             | 60              |                 |                 | 170        | 13000           | 0.05            | <600            |
|               | 8               | 1                    | 20                | 10              | 40             | 60              |                 |                 | 200        | 12000           | 0.06            | <600            |
|               | 6<br>4          | 1<br><1              | 20<br>20          | 10<br>10        | 40<br>7        | 70<br>50        |                 |                 | 200<br>160 | 20000<br>21000  | 0.06<br>0.05    | <600<br><600    |
|               | 5               | <1                   | 20                | 10              | 40             | 60              |                 |                 | 180        | 14000           | 0.05            | <600            |
|               | 5               | <1                   | 20                | 10              | 50             | 60              |                 |                 | 200        | 13000           | 0.05            | <600            |
|               |                 |                      |                   |                 |                |                 |                 |                 |            |                 |                 |                 |
|               |                 |                      |                   |                 | 2.4            |                 |                 |                 |            |                 | 2.4.6           |                 |
|               | 2 -             | 2 4-DT-              | 2 4-00            | 4,6-<br>DINITRO | 2,4<br>DI-     | 2-              | 4 -             | DEN             | TA-        | PHENOL          | 2,4,6-<br>TRI-  | ACE-            |
|               |                 | 2,4-DI-<br>- CHLORO- | IN                | -ORTHO-         |                |                 |                 |                 |            | (C6H-           | CHLORO-         | NAPHTH-         |
| SITE          | PHENOL          |                      | BOTTOM            | CRESOL          | PHENC          |                 |                 |                 | NOL        | 5OH)            | PHENOL          | ENE             |
| NAME          |                 | T BOT.MAT            |                   | BOT.MAT         |                |                 |                 |                 |            | BOT.MAT         |                 | BOT.MAT         |
|               | (UG/KG          | ) (UG/KG)            | (UG/KG)           | (UG/KG)         | (UG/KG         | ) (UG/K         | G) (UG/         | KG) (UG/        | KG)        | (UG/KG)         | (UG/KG)         | (UG/KG)         |
|               | (34589          | ) (34604)            | (34609)           | (34660)         | (34619         | (3459           | 4) (346         | 49) (390        | 61)        | (34695)         | (34624)         | (34208)         |
| Residential 1 | m ~200          | <200                 | <200              | <600            | <60            | 00 <2           | 00 -            | 600 -           | -600       | -200            | ~600            | ~200            |
| Residential 1 | T <200<br><200  | <200                 | <200              |                 |                |                 |                 |                 | 600        | <200<br>E250    |                 | <200<br><200    |
|               | <200            | <200                 | <200              |                 |                |                 |                 |                 | 600        | E530            |                 | <200            |
|               | <200            | <200                 | <200              |                 |                |                 |                 |                 | 600        | <200            |                 | <200            |
|               | <200            | <200                 | <200              |                 | <60            | 00 <2           |                 |                 | 600        | <200            |                 | <200            |
|               | <200            | <200                 | <200              | <600            | <60            | 00 <2           | 00 <            | 600 <           | 600        | <200            | <600            | <200            |
| Residential 4 | <200            | <200                 | <200              | <600            | <60            | 00 <2           | 00 -            | 600 <           | 600        | <200            | <600            | -200            |
| Residential 4 | <200            | <200<br><200         | <200              |                 |                |                 |                 |                 | 600        | E360            |                 | <200<br><200    |
|               | <200            | <200                 | <200              |                 |                |                 |                 |                 | 600        | E210            |                 | <200            |
|               | <200            | <200                 | <200              |                 |                |                 |                 |                 | 600        | <200            |                 | <200            |
|               | <200            | <200                 | <200              |                 |                |                 |                 |                 | 600        | <200            |                 | <200            |
|               | <200            | <200                 | <200              | <600            | <60            | 00 <2           | 00 <            | 600 <           | 600        | <200            | <600            | <200            |
|               |                 |                      |                   |                 |                |                 |                 |                 |            |                 |                 |                 |

**Table 10**. Chemical analyses for sediments collected from Residential 1T and Residential 4 between April 7 through August 31, 1994, to assess temporal variability of selected constituents—Continued

|                |                 |                    | BENZO A            |                    |                    |                    | BENZOGH              |                    | BIS                | BIS                | BIS (2-            |
|----------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|
|                | ACE-            |                    | ANTHRAC<br>ENE1,2- | BENZO E<br>FLUOR-  | BENZO F<br>FLUOR-  | BENZO-             | I PERYL<br>ENE1,12   | N-BUTYL<br>BENZYL  | (2-<br>CHLORO-     | (2-<br>CHLORO-     | CHLORO-<br>ISO-    |
|                | NAPHTH-         | ANTHRA-            | BENZANT            | AN-                | AN-                | A-                 | -BENZO-              | PHTHAL-            | ETHOXY)            | ETHYL)             | PROPYL)            |
| SITE           | YLENE           | CENE               | HRACENE            | THENE              | THENE              | PYRENE             | PERYLENE             |                    | METHANE            | ETHER<br>BOT MAT   | ETHER              |
| NAME           | BOT.MAT         | BOT.MAT (UG/KG)    | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT            | ' BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | (UG/KG)            | BOT.MAT (UG/KG)    |
|                | (34203)         | (34223)            | (34529)            | (34233)            | (34245)            | (34250)            | (34524)              | (34295)            | (34281)            | (34276)            | (34286)            |
| Residential 17 | r <200          | <200               | <400               | <400               | <400               | <400               | <400                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <400               | <400               | <400               | <400               | <400                 | 230                | <200               | <200               | <200               |
|                | <200<br><200    | <200<br><200       | <400<br><400       | <400<br><400       | <400<br><400       | <400<br><400       | <400<br><400         | <200<br><200       | <200<br><200       | <200<br><200       | <200<br><200       |
|                | <200            | <200               | <400               | <400               | <400               | <400               | <400                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <400               | <400               | <400               | <400               | <400                 | 280                | <200               | <200               | <200               |
| Residential 4  | <200            | <200               | <400               | <400               | <400               | <400               | <400                 | 290                | <200               | <200               | <200               |
|                | <200            | <200               | <400               | <400               | <400               | <400               | <400                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <400               | <400               | 550                | <400               | <400                 | <200               | <200               | <200               | <200               |
|                | <200<br><200    | <200<br><200       | <400<br><400       | <400<br><400       | <400<br><400       | <400<br><400       | <400<br><400         | <200<br><200       | <200<br><200       | <200<br><200       | <200<br><200       |
|                | <200            | <200               | <400               | 530                | <400               | <400               | <400                 | 330                | <200               | <200               | <200               |
|                |                 |                    |                    |                    |                    |                    |                      |                    |                    |                    |                    |
|                | 4 -<br>BROMO -  | 2 -                | 4-<br>CHLORO-      |                    | 1,2,5,6            | DI-N-              |                      |                    |                    |                    | DI-                |
|                | PHENYL          | CHLORO-            | PHENYL             |                    | -DIBENZ            | BUTYL              | 1,2-DI-              | 1,3-DI-            | 1,4-DI-            | DIETHYL            | METHYL             |
|                | PHENYL          | NAPH-              | PHENYL             | CHRY-              | -ANTHRA            | PHTHAL-            | CHLORO-              | CHLORO-            | CHLORO-            | PHTHAL-            | PHTHAL-            |
| SITE           | ETHER           | THALENE            | ETHER              | SENE               | -CENE              | ATE                |                      |                    | BENZENE            | ATE                | ATE                |
| NAME           | BOT.MAT (UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT (UG/KG)      | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) | BOT.MAT<br>(UG/KG) |
|                | (34639)         | (34584)            | (34644)            | (34323)            | (34559)            | (39112)            | (34539)              | (34569)            | (34574)            | (34339)            | (34344)            |
| Residential 13 | r <200          | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | 1000               | <200               | <200               |
|                | <200            | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | <200               | <200               | <200               |
|                | <200<br><200    | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | <200               | <200               | <200               |
|                | <200            | <200<br><200       | <200<br><200       | <400<br><400       | <400<br><400       | 280<br>210         | <200<br>290          | <200<br>270        | 1300<br><200       | <200<br><200       | <200<br><200       |
| Residential 4  | <200            | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | 1200               | 210                | <200               |
|                | <200            | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <200               | <400               | <400               | <200               | <200                 | <200               | <200               | <200               | <200               |
|                | <200<br><200    | <200<br><200       | <200<br><200       | <400<br><400       | <400<br><400       | <200<br><200       | <200                 | <200               | <200               | <200               | <200               |
|                | <200            | <200               | <200               | <400               | 420                | <200               | <200<br><200         | <200<br>400        | 430<br><200        | <200<br><200       | <200<br><200       |
|                |                 |                    |                    | RT.                | 3 (2 -             |                    | u                    | EXA-               | u                  | EXA-               |                    |
|                |                 |                    | DI                 | -N- ET             |                    |                    |                      |                    |                    | ORO-               |                    |
|                |                 |                    | -DI- OCT           |                    | (L)                |                    | BEN                  |                    |                    | CLO- HE            | EXA-               |
| GT TO          |                 | ro- NIT            |                    |                    | HAL- FLU           |                    |                      | . IN BU            |                    |                    | ORO-               |
| SITE<br>NAME   |                 |                    |                    |                    |                    |                    |                      |                    | ENCE ADI           |                    | HANE<br>MAT        |
| 14010          |                 |                    |                    |                    |                    |                    |                      |                    |                    |                    | (KG)               |
|                | (34             |                    |                    | 599) (391          |                    | 384) (34           |                      |                    |                    |                    | (399)              |
| Residential 17 |                 |                    |                    |                    |                    |                    | 200                  |                    |                    | 200 <              | 200                |
|                |                 |                    |                    |                    |                    | 200                |                      |                    |                    |                    | 200                |
|                |                 |                    |                    |                    |                    |                    |                      |                    |                    |                    | :200<br>:200       |
|                |                 |                    |                    |                    |                    |                    |                      |                    |                    |                    | 200                |
|                |                 |                    |                    |                    |                    |                    | 200                  |                    |                    |                    | <200               |
| Residential 4  |                 | <200 <             | 200 <              | 400 <              | 200 <              | 200                | 340                  | <200 <             | 200 <              | 200 -              | 200                |
|                |                 |                    |                    |                    |                    |                    | 200                  |                    |                    |                    | <200               |
|                |                 |                    |                    |                    |                    | 200                | 260                  |                    |                    |                    | <200               |
|                |                 |                    |                    |                    |                    | 200<br>200         | 270<br>290           |                    |                    |                    | <200<br><200       |
|                |                 |                    |                    |                    |                    | 200                | 320                  |                    |                    |                    | <200               |
|                |                 |                    |                    |                    |                    |                    |                      |                    |                    |                    |                    |

**Table 10.** Chemical analyses for sediments collected from Residential 1T and Residential 4 between April 7 through August 31, 1994, to assess temporal variability of selected constituents—Continued

|                |         |         |         |         |         |         | N-      |         |         |         |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                | INDENO  |         |         |         | N-NITRO | N-NITRO | NITRO-  |         |         | 1,2,4-  |
|                | (1,2,3- |         |         |         | -SODI-  | -SODI-  | SODI-N- |         |         | TRI-    |
|                | CD)     | ISO-    | NAPHTH- | NITRO-  | METHY - | PHENY - | PROPYL- | PHENAN- |         | CHLORO- |
| SITE           | PYRENE  | PHORONE | ALENE   | BENZENE | LAMINE  | LAMINE  | AMINE   | THRENE  | PYRENE  | BENZENE |
| NAME           | BOT.MAT |
|                | (UG/KG) |
|                | (34406) | (34411) | (34445) | (34450) | (34441) | (34436) | (34431) | (34464) | (34472) | (34554) |
| Residential 1T | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 260     | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
| Residential 4  | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 310     | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 230     | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 250     | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 240     | <200    |
|                | <400    | <200    | <200    | <200    | <200    | <200    | <200    | <200    | 330     | <200    |

**Table 11.** Survival rates of *Hyalella azteca* iin sediments collected from industrial, commercial, and residential basins, 1994

| Basin name   | Date of sampling | Test<br>start<br>date | Survival rate<br>of<br><i>Hyallella</i><br><i>azteca</i> ,<br>in percent | Basin name    | Date of sampling | Test<br>start<br>date | Survival rate<br>of<br><i>Hyallella</i><br><i>azteca,</i><br>in percent |
|--------------|------------------|-----------------------|--------------------------------------------------------------------------|---------------|------------------|-----------------------|-------------------------------------------------------------------------|
| Industrial 1 | 03-03-94         | 03-28-94              | 95                                                                       | Commercial 5  | 11–10–94         | 11-20-94              | 0                                                                       |
| Industrial 2 | 030294           | 03-28-94              | 0                                                                        | Commercial 6  | 12-30-94         | 01–13–95              | 0                                                                       |
| Industrial 3 | 03-02-94         | 03-28-94              | 92                                                                       | Commercial 7  | 12-30-94         | 01-13-95              | 0                                                                       |
| Industrial 4 | 02-17-94         | 03-06-94              | 79                                                                       | Commercial 8  | 110894           | 112094                | 0                                                                       |
| Industrial 5 | 11-10-94         | 11-20-94              | 0                                                                        | Residential 1 | 02-16-94         | 030694                | 82                                                                      |
| Industrial 6 | 12-29-94         | 01-13-95              | 50                                                                       | Residential 2 | 03-02-94         | 03-28-94              | 68                                                                      |
| Industrial 7 | 12-15-94         | 01-13-95              | 87                                                                       | Residential 3 | 02-17-94         | 030694                | 94                                                                      |
| Industrial 8 | 110894           | 11-20-94              | 0                                                                        | Residential 4 | 02-17-94         | 030694                | 69                                                                      |
| Commercial 1 | 03-03-94         | 03-28-94              | 83                                                                       | Residential 5 | 12-15-94         | 01-13-95              | 0                                                                       |
| Commercial 2 | 03-04-94         | 03-28-94              | 44                                                                       | Residential 6 | 12-15-94         | 01-13-95              | 0                                                                       |
| Commercial 3 | 03-03-94         | 03-28-94              | 94                                                                       | Residential 7 | 11-08-94         | 11-20-94              | 0                                                                       |
| Commercial 4 | 02-17-94         | 030694                | 51                                                                       | Residential 8 | 11-10-94         | 11–20–94              | 75                                                                      |

Table 12. Effects of sample preparation on toxicity results

|               | Date     | Test start | Survival rate of<br>Hyalella azteca, in<br>percent |          |  |  |
|---------------|----------|------------|----------------------------------------------------|----------|--|--|
| Basin name    | sampled  | date       | Sieved                                             | Unsieved |  |  |
| Industrial 1  | 08–16–94 | 08-20-94   | 0                                                  | 75       |  |  |
| Commercial 3  | 08–16–94 | 08-20-94   | 0                                                  | 14       |  |  |
| Residential 3 | 08–16–94 | 08-20-94   | 42                                                 | 44       |  |  |

Table 13. Quality-assurance sample replicates for sediments collected from selected detention basins

[Values are for bottom material. mg/kg, milligram per kilogram; g/kg, gram per kilogram; µg/g, micrograms per gram; DDD, dichlorodiphenyldichloroethane; DDE, dichlorodiphenylethylene; DDT, dichlorodiphenyltrichloroethane; PCB, polychlorinated biphenyl; PCN, polychlorinated naphthanlene. <, less than]

| Station name   | Date     | Chemical-oxygen<br>demand, total in<br>bottom material<br>(mg/kg) | Moisture con-<br>tent, dry weight<br>(percent of total) | Carbon, inorganic,<br>total (g/kg as C) | Carbon, inorganic pius<br>organic total (g/kg) |
|----------------|----------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------|
| Residential 1T | 04-22-94 | 97,000                                                            | 4                                                       |                                         |                                                |
| Commercial 5   | 11-10-94 |                                                                   |                                                         | 3.5                                     | 45                                             |

| Station name   | Date     | Moisture<br>content,<br>dry weight<br>(percent<br>of total) | Nitrogen,<br>NH4 total<br>(mg/kg as<br>N) | Nitrogen, NH4<br>plus organic<br>total<br>(mg/kg as N) | Nitrogen,<br>NO <sub>2</sub> +NO <sub>3</sub><br>total<br>(mg/kg as N) | Phosphorus,<br>total<br>(mg/kg as P) | Arsenic,<br>total<br>(μg/g as As) | Cadmium,<br>recoverable<br>(μg/g as Cd) |
|----------------|----------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|
| Residential 1T | 06-27-94 | 4                                                           | 16                                        | 3,300                                                  | 5.0                                                                    | 1,100                                | 5                                 | 2                                       |
| Residential 7  | 110894   | 5                                                           | 4.0                                       | 300                                                    | <2.0                                                                   | 1,000                                | 12                                | <1                                      |
| Industrial 6   | 12-29-94 | 1                                                           | 7.7                                       | 550                                                    | <2.0                                                                   | 560                                  | 7                                 | 3                                       |

| Station name   | Date     | Chromium,<br>recoverable<br>(μg/g as Cr) | Cobait,<br>recoverable<br>(μg/g as Co) | Copper,<br>recoverable<br>(μg/g as Cu) | Iron,<br>recoverable<br>(μg/g as Fe) | Lead,<br>recoverable<br>(μg/g as Pb) | Manganese,<br>recoverable<br>(μg/g as Mn) | Zinc,<br>recoverable<br>(μg/g as Zn) |
|----------------|----------|------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
| Residential 1T | 06–27–94 | 10                                       | 20                                     | 30                                     | 12,000                               | 40                                   | 400                                       | 120                                  |
| Residential 7  | 110894   | 20                                       | 20                                     | 30                                     | 19,000                               | 10                                   | 680                                       | 50                                   |
| 1ndustrial 6   | 122994   | 20                                       | 10                                     | 130                                    | 13,000                               | 70                                   | 330                                       | 240                                  |

| Station name  | Date     | Aldrin,<br>total<br>(μg/kg) | Chior-<br>dane,<br>total<br>(μg/kg) | DDD, total<br>(μg/kg) | DDE, total<br>(μg/kg) | DDT, total<br>(μg/kg) | Dieldrin,<br>total<br>(μg/kg) | Endosul-<br>fan, total<br>(μg/kg) | Endrin,<br>total<br>(μg/kg) | Heptachlor,<br>total<br>(μg/kg) |
|---------------|----------|-----------------------------|-------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------------------|-----------------------------|---------------------------------|
| Industrial 8  | 110894   | <0.1                        | 38                                  | 1.4                   | 6.6                   | <0.1                  | 0.6                           | <0.4                              | <0.1                        | <0.1                            |
| Residential 5 | 12-15-94 | .8                          | 130                                 | 7.6                   | 24                    | 4.0                   | 3.5                           | <.6                               | <8.0                        | <.1                             |

| Station name  | Date     | Heptachlor<br>epoxide, total<br>(μg/kg) | Lindane,<br>totai<br>(µg/kg) | Methoxy-<br>chlor, total<br>(μg/kg) | Mirex,<br>totai<br>(μg/kg) | PCB, total<br>(μg/kg) | PCN, totai<br>(μg/kg) | Perthane,<br>total<br>(µg/kg) | Toxaphene,<br>total<br>(μg/kg) |
|---------------|----------|-----------------------------------------|------------------------------|-------------------------------------|----------------------------|-----------------------|-----------------------|-------------------------------|--------------------------------|
| Industrial 8  | 110894   | <0.1                                    | <0.1                         | <4.0                                | <0.1                       | 16                    | <1.0                  | <1.00                         | 30                             |
| Residential 5 | 12-15-94 | .3                                      | .2                           | <9.0                                | <.i                        | 12                    | <1.0                  | <9.00                         | 50                             |

See footnote at end of table.

Table 13. Quality-assurance sample replicates for selected detention basins—Continued

| N-butyl-benzyl-phthal-ate   Serie    | Station name  | Date     | Ace-<br>naphth<br>ylene<br>(μg/kg)          | Ace-<br>naphth-<br>ene<br>(μg/kg)               | Anthra-<br>cene<br>(μg/kg) | Benzo B<br>fluor-<br>anthene<br>(μg/kg) | Benzo K<br>fluor-<br>anthene<br>(μg/kg) | Benzo-A-<br>pyrene<br>(μg/kg) | Bis<br>(2-<br>chloro-<br>ethyi)<br>ether<br>(μg/kg) | Bis<br>(2<br>chloro-<br>ethoxy)<br>methane<br>(μg/kg) | Bis<br>(2-<br>chloro-<br>iso-pro-<br>pyl)<br>ether<br>(μg/kg) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------------------------------------------|-------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|
| N-bluty - phthal- ate sone ate ate anthon- one addense ethane py phthal- ate sone ate ate anthon- one addense ethane py phthal- ate sone ate ate anthon- one addense ethane py phthal- ate sone ate ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate anthon- one addense ethane py phthal- ate sone ate sodi- ug/kg) (ug/kg) (ug/ | Residential 4 | 04-22-94 | <200                                        | <200                                            | <200                       | <sup>1</sup> 550                        | <400                                    | <400                          | <200                                                | <200                                                  | <200                                                          |
| N-nitro sodi- sodi- sodi- pheny- methy- lamine l  | Station name  | Date     | benzyl-<br>phthal-<br>ate                   | sene                                            | phthal-<br>ate             | methyl-<br>phthal-<br>ate               | anthene                                 | ene                           | chloro-<br>cyclo-<br>pent-<br>adiene                | chloro-<br>ethane                                     | indeno<br>(1,2,3-<br>CD)<br>pyrene<br>(µg/kg)                 |
| Station name   Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Residential 4 | 04-22-94 | 240                                         | 410                                             | <200                       | <200                                    | 470                                     | <200                          | <200                                                | <200                                                  | <400                                                          |
| Benzogh   anthra-   1,2,5,6-   Diben   2-   ene1,1   2-   ene1,1   2-   ene1,1   2-   ene1,1   2-   ene1   enezene   enezen  | Station name  | Date     | phorone                                     | sodi-n-<br>propyl-<br>amine                     | sodi-<br>pheny-<br>lamine  | sodi-<br>methy-<br>lamine               | alene                                   | benzene                       | chloro-<br>meta<br>cresol                           | threne                                                | Pyrene<br>(μg/kg)                                             |
| Benzogh   anthra-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Residential 4 | 04-22-94 | <200                                        | <200                                            | <200                       | <200                                    | <200                                    | <200                          | <600                                                | <200                                                  | 430                                                           |
| DI-N-   2,4-   Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Station name  | Date     | I-peryi-<br>ene1, 12-<br>benzo-<br>peryiene | anthra-<br>cene1,<br>2-ben-<br>zanthra-<br>cene | chloro-<br>benzene         | chloro-<br>benzene                      | Diben-<br>zan-<br>thra-<br>cene         | chloro-<br>benzene            | chloro-<br>benzene                                  | Chloro-<br>naph<br>thalene                            | 2-<br>Chloro-<br>phenol<br>(μg/kg)                            |
| Di-N-   2,4-   Br.   2-   octyl-   2,4-Di-   Di-   2,4,6-Tri-   2,6-Di-   ph.   p  | Residential 4 | 04-22-94 | <400                                        | <400                                            | <200                       | <200                                    | <400                                    | <200                          | <200                                                | <200                                                  | <200                                                          |
| 4-  Chlorophenyl 4- 4,6- Penta- Di-N- chloro- chloro- phenyl Nitro- Dinitro- Phenol chloro- butyl- benzene, bu ether phenol orthocresol (C6H-5OH) phenol phthalate total die Station name Date (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Station name  | Date     | Nitro-<br>phenol                            | octyl-<br>phthal-<br>ate                        | chloro-<br>phenol          | •                                       | nitro-<br>toluene                       | Di-<br>nitro-<br>phenol       | chloro-<br>phenol                                   | nitro-<br>toluene                                     | 4-<br>Bromo-<br>phenyi<br>phenyi<br>ether<br>(µg/kg)          |
| Chlorophenyl 4- 4,6- Penta- Di-N- chloro- chloro- chloro- phenyl Nitro- Dinitro- Phenol chloro- butyl- benzene, bu ether phenol orthocresol (C6H-5OH) phenol phthalate total die Station name Date (μg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residential 4 | 04-22-94 | <200                                        | <400                                            | <200                       | <200                                    | <200                                    | <600                          | <600                                                | <200                                                  | <200                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Station name  |          | Chloropheny<br>phenyl<br>ether              | Nitro-<br>phenol                                | Dinitr<br>orthocr          | o- Phe<br>esol (C6H-                    | noi chlo<br>50H) phe                    | oro- bi<br>onol phti          | ıtyi- t<br>nalate                                   | chioro-<br>enzene,<br>total                           | Hexa-<br>chloro-<br>buta-<br>dience<br>(μg/kg)                |
| Residential 4 04-22-94 <200 <600 <600 <1470 <600 <1270 <200 <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residential 4 | 04-22-94 | <200                                        | <600                                            | <600                       |                                         |                                         |                               |                                                     | <200                                                  | <200                                                          |

<sup>&</sup>lt;sup>1</sup>Estimated.